Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal–Organic Frameworks

Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal–organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (−SO3H, S) and ammonium (...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 137; no. 24; pp. 7810 - 7816
Main Authors Choi, Kyung Min, Na, Kyungsu, Somorjai, Gabor A, Yaghi, Omar M
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chemical environment control of the metal nanoparticles (NPs) embedded in nanocrystalline metal–organic frameworks (nMOFs) is useful in controlling the activity and selectivity of catalytic reactions. In this report, organic linkers with two functional groups, sulfonic acid (−SO3H, S) and ammonium (−NH3 +, N), are chosen as strong and weak acidic functionalities, respectively, and then incorporated into a MOF [Zr6O4(OH)4(BDC)6 (BDC = 1,4-benzenedicarboxylate), termed UiO-66] separately or together in the presence of 2.5 nm Pt NPs to build a series of Pt NPs-embedded in UiO-66 (Pt⊂nUiO-66). We find that these chemical functionalities play a critical role in product selectivity and activity in the gas-phase conversion of methylcyclopentane (MCP) to acyclic isomer, olefins, cyclohexane, and benzene. Pt⊂nUiO-66-S gives the highest selectivity to C6-cyclic products (62.4% and 28.6% for cyclohexane and benzene, respectively) without acyclic isomers products. Moreover, its catalytic activity was doubled relative to the nonfunctionalized Pt⊂nUiO-66. In contrast, Pt⊂nUiO-66-N decreases selectivity for C6-cyclic products to <50% while increases the acyclic isomer selectivity to 38.6%. Interestingly, the Pt⊂nUiO-66-SN containing both functional groups gave different product selectivity than their constituents; no cyclohexane was produced, while benzene was the dominant product with olefins and acyclic isomers as minor products. All Pt⊂nUiO-66 catalysts with different functionalities remain intact and maintain their crystal structure, morphology, and chemical functionalities without catalytic deactivation after reactions over 8 h.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.5b03540