Theoretical Study of the Thermolysis Reaction and Chemiexcitation of Coelenterazine Dioxetanes

Coelenterazine and other imidazopyrazinones are important bioluminescent substrates widespread in marine species and can be found in eight phyla of luminescent organisms. Light emission from these systems is caused by the formation and subsequent thermolysis of a dioxetanone intermediate, whose deco...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 126; no. 22; pp. 3486 - 3494
Main Authors Magalhães, Carla M., Esteves da Silva, Joaquim C. G., Pinto da Silva, Luís
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Coelenterazine and other imidazopyrazinones are important bioluminescent substrates widespread in marine species and can be found in eight phyla of luminescent organisms. Light emission from these systems is caused by the formation and subsequent thermolysis of a dioxetanone intermediate, whose decomposition allows for efficient chemiexcitation to singlet excited states. Interestingly, some studies have also reported the involvement of unexpected dioxetane intermediates in the chemi- and bioluminescent reactions of Coelenterazine, albeit with little information on the underlying mechanisms of these new species. Herein, we have employed a theoretical approach based on density functional theory to study for the first time the thermolysis reaction and chemiexcitation profile of two Coelenterazine dioxetanes. We have found that the thermolysis reactions of these species are feasible but with relevant energetic differences. More importantly, we found that the singlet chemiexcitation profiles of these dioxetanes are significantly less efficient than the corresponding dioxetanones. Furthermore, we identified triplet chemiexcitation pathways for the Coelenterazine dioxetanes. Given this, the chemiexcitation of these dioxetanes should lead only to minimal luminescence. Thus, our theoretical investigation of these systems indicates that the thermolysis of these dioxetanes should only provide “dark” pathways for the formation of nonluminescent degradation products of the chemi- and bioluminescent reactions of Coelenterazine and other imidazopyrazinones.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.2c01835