Photoluminescent Anisotropy Amplification in Polymorphic Organic Nanocrystals by Light-Harvesting Energy Transfer
Polymorphism and anisotropy are fundamental phenomena of crystalline materials. However, the structure-dependent photoluminescent (PL) anisotropy in polymorphic organic crystals has remained unexplored. Herein, two polymorphic nanocrystals, green-emitting nanorods (PtD-g) and yellow-emitting nanopla...
Saved in:
Published in | Journal of the American Chemical Society Vol. 141; no. 15; pp. 6157 - 6161 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
WASHINGTON
American Chemical Society
17.04.2019
Amer Chemical Soc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Polymorphism and anisotropy are fundamental phenomena of crystalline materials. However, the structure-dependent photoluminescent (PL) anisotropy in polymorphic organic crystals has remained unexplored. Herein, two polymorphic nanocrystals, green-emitting nanorods (PtD-g) and yellow-emitting nanoplates (PtD-y), were obtained from a platinum(II)−β-diketonate complex. The PtD-y crystals display remarkable PL anisotropy with an anisotropy ratio of up to 0.87 whereas the emission of the PtD-g crystals is nearly unpolarized. The polarization properties are rationalized on the different molecular packing of these crystals. By light-harvesting energy transfer, the PtD-y crystals are successfully used to amplify the emission polarization of a red-emitting platinum acceptor (PtA) doped into the donor crystalline matrix, which is otherwise weakly polarized as pure crystals. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.9b02055 |