Highly Emissive Covalent Organic Frameworks
Highly luminescent covalent organic frameworks (COFs) are rarely achieved because of the aggregation-caused quenching (ACQ) of π–π stacked layers. Here, we report a general strategy to design highly emissive COFs by introducing an aggregation-induced emission (AIE) mechanism. The integration of AIE-...
Saved in:
Published in | Journal of the American Chemical Society Vol. 138; no. 18; pp. 5797 - 5800 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Highly luminescent covalent organic frameworks (COFs) are rarely achieved because of the aggregation-caused quenching (ACQ) of π–π stacked layers. Here, we report a general strategy to design highly emissive COFs by introducing an aggregation-induced emission (AIE) mechanism. The integration of AIE-active units into the polygon vertices yields crystalline porous COFs with periodic π-stacked columnar AIE arrays. These columnar AIE π-arrays dominate the luminescence of the COFs, achieve exceptional quantum yield via a synergistic structural locking effect of intralayer covalent bonding and interlayer noncovalent π–π interactions and serve as a highly sensitive sensor to report ammonia down to sub ppm level. Our strategy breaks through the ACQ-based mechanistic limitations of COFs and opens a way to explore highly emissive COF materials. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.6b02700 |