Quantification of Poly(vinyl chloride) Microplastics via Pressurized Liquid Extraction and Combustion Ion Chromatography

A reliable analytical method has been developed to quantify poly­(vinyl chloride) (PVC) in environmental samples. Quantification was conducted via combustion ion chromatography (C-IC). Hydrogen chloride (HCl) was quantitatively released from PVC during thermal decomposition and trapped in an absorpt...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 57; no. 12; pp. 4806 - 4812
Main Authors Kamp, Jan, Dierkes, Georg, Schweyen, Peter Nikolaus, Wick, Arne, Ternes, Thomas A.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A reliable analytical method has been developed to quantify poly­(vinyl chloride) (PVC) in environmental samples. Quantification was conducted via combustion ion chromatography (C-IC). Hydrogen chloride (HCl) was quantitatively released from PVC during thermal decomposition and trapped in an absorption solution. Selectivity of the marker HCl in complex environmental samples was ensured using cleanup via pressurized liquid extraction (PLE) with methanol at 100 °C (discarded) and tetrahydrofuran at 185 °C (collected). Using this method, recoveries of 85.5 ± 11.5% and a limit of quantification down to 8.3 μg/g were achieved. A variety of hard and soft PVC products could be successfully analyzed via C-IC with recoveries exceeding >95%. Furthermore, no measurable overdetermination was found for various organic and inorganic matrix ingredients, such as sodium chloride, sucralose, hydroxychloroquine, diclofenac, chloramphenicol, triclosan, or polychlorinated biphenyls. In addition, sediments and suspended particular matter showed PVC concentrations ranging up to 16.0 and 220 μg/g, respectively. However, the gap between determined polymer mass and particle masses could be significant since soft PVC products contain plasticizers up to 50 wt %. Hence, the results of the described method represent a sum of all chlorine-containing polymers, which are extractable under the chosen conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.2c06555