Alcohol Pretreatment to Eliminate the Interference of Micro Additive Particles in the Identification of Microplastics Using Raman Spectroscopy

Raman spectroscopy is an indispensable tool in the analysis of microplastics smaller than 20 μm. However, due to its limitation, Raman spectroscopy may be incapable of effectively distinguishing microplastics from micro additive particles. To validate this hypothesis, we characterized and compared t...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 56; no. 17; pp. 12158 - 12168
Main Authors Li, Dunzhu, Sheerin, Emmet D., Shi, Yunhong, Xiao, Liwen, Yang, Luming, Boland, John J., Wang, Jing Jing
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Raman spectroscopy is an indispensable tool in the analysis of microplastics smaller than 20 μm. However, due to its limitation, Raman spectroscopy may be incapable of effectively distinguishing microplastics from micro additive particles. To validate this hypothesis, we characterized and compared the Raman spectra of six typical slip additives with polyethylene and found that their hit quality index values (0.93–0.96) are much higher than the accepted threshold value (0.70) used to identify microplastics. To prevent this interference, a new protocol involving an alcohol treatment step was introduced to successfully eliminate additive particles and accurately identify microplastics. Tests using the new protocol showed that three typical plastic products (polyethylene pellets, polyethylene bottle caps, and polypropylene food containers) can simultaneously release microplastic-like additive particles and microplastics regardless of the plastic type, daily-use scenario, or service duration. Micro additive particles can also adsorb onto and modify the surfaces of microplastics in a manner that may potentially increase their health risks. This study not only reveals the hidden problem associated with the substantial interference of additive particles in microplastic detection but also provides a cost-effective method to eliminate this interference and a rigorous basis to quantify the risks associated with microplastic exposure.
AbstractList Raman spectroscopy is an indispensable tool in the analysis of microplastics smaller than 20 μm. However, due to its limitation, Raman spectroscopy may be incapable of effectively distinguishing microplastics from micro additive particles. To validate this hypothesis, we characterized and compared the Raman spectra of six typical slip additives with polyethylene and found that their hit quality index values (0.93-0.96) are much higher than the accepted threshold value (0.70) used to identify microplastics. To prevent this interference, a new protocol involving an alcohol treatment step was introduced to successfully eliminate additive particles and accurately identify microplastics. Tests using the new protocol showed that three typical plastic products (polyethylene pellets, polyethylene bottle caps, and polypropylene food containers) can simultaneously release microplastic-like additive particles and microplastics regardless of the plastic type, daily-use scenario, or service duration. Micro additive particles can also adsorb onto and modify the surfaces of microplastics in a manner that may potentially increase their health risks. This study not only reveals the hidden problem associated with the substantial interference of additive particles in microplastic detection but also provides a cost-effective method to eliminate this interference and a rigorous basis to quantify the risks associated with microplastic exposure.Raman spectroscopy is an indispensable tool in the analysis of microplastics smaller than 20 μm. However, due to its limitation, Raman spectroscopy may be incapable of effectively distinguishing microplastics from micro additive particles. To validate this hypothesis, we characterized and compared the Raman spectra of six typical slip additives with polyethylene and found that their hit quality index values (0.93-0.96) are much higher than the accepted threshold value (0.70) used to identify microplastics. To prevent this interference, a new protocol involving an alcohol treatment step was introduced to successfully eliminate additive particles and accurately identify microplastics. Tests using the new protocol showed that three typical plastic products (polyethylene pellets, polyethylene bottle caps, and polypropylene food containers) can simultaneously release microplastic-like additive particles and microplastics regardless of the plastic type, daily-use scenario, or service duration. Micro additive particles can also adsorb onto and modify the surfaces of microplastics in a manner that may potentially increase their health risks. This study not only reveals the hidden problem associated with the substantial interference of additive particles in microplastic detection but also provides a cost-effective method to eliminate this interference and a rigorous basis to quantify the risks associated with microplastic exposure.
Raman spectroscopy is an indispensable tool in the analysis of microplastics smaller than 20 μm. However, due to its limitation, Raman spectroscopy may be incapable of effectively distinguishing microplastics from micro additive particles. To validate this hypothesis, we characterized and compared the Raman spectra of six typical slip additives with polyethylene and found that their hit quality index values (0.93–0.96) are much higher than the accepted threshold value (0.70) used to identify microplastics. To prevent this interference, a new protocol involving an alcohol treatment step was introduced to successfully eliminate additive particles and accurately identify microplastics. Tests using the new protocol showed that three typical plastic products (polyethylene pellets, polyethylene bottle caps, and polypropylene food containers) can simultaneously release microplastic-like additive particles and microplastics regardless of the plastic type, daily-use scenario, or service duration. Micro additive particles can also adsorb onto and modify the surfaces of microplastics in a manner that may potentially increase their health risks. This study not only reveals the hidden problem associated with the substantial interference of additive particles in microplastic detection but also provides a cost-effective method to eliminate this interference and a rigorous basis to quantify the risks associated with microplastic exposure.
Raman spectroscopy is an indispensable tool in the analysis of microplastics smaller than 20 μm. However, due to its limitation, Raman spectroscopy may be incapable of effectively distinguishing microplastics from micro additive particles. To validate this hypothesis, we characterized and compared the Raman spectra of six typical slip additives with polyethylene and found that their hit quality index values (0.93–0.96) are much higher than the accepted threshold value (0.70) used to identify microplastics. To prevent this interference, a new protocol involving an alcohol treatment step was introduced to successfully eliminate additive particles and accurately identify microplastics. Tests using the new protocol showed that three typical plastic products (polyethylene pellets, polyethylene bottle caps, and polypropylene food containers) can simultaneously release microplastic-like additive particles and microplastics regardless of the plastic type, daily-use scenario, or service duration. Micro additive particles can also adsorb onto and modify the surfaces of microplastics in a manner that may potentially increase their health risks. This study not only reveals the hidden problem associated with the substantial interference of additive particles in microplastic detection but also provides a cost-effective method to eliminate this interference and a rigorous basis to quantify the risks associated with microplastic exposure. Alcohol pretreatment eliminates the potential misidentification of the chemical additives and microplastic particles released during plastic degradation by enabling particle separation and individual analysis.
Author Li, Dunzhu
Shi, Yunhong
Yang, Luming
Sheerin, Emmet D.
Xiao, Liwen
Boland, John J.
Wang, Jing Jing
AuthorAffiliation AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)
Department of Civil, Structural and Environmental Engineering
Trinity College Dublin
School of Chemistry
TrinityHaus
AuthorAffiliation_xml – name: Department of Civil, Structural and Environmental Engineering
– name: TrinityHaus
– name: Trinity College Dublin
– name: AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)
– name: School of Chemistry
Author_xml – sequence: 1
  givenname: Dunzhu
  surname: Li
  fullname: Li, Dunzhu
  organization: Trinity College Dublin
– sequence: 2
  givenname: Emmet D.
  surname: Sheerin
  fullname: Sheerin, Emmet D.
  organization: Trinity College Dublin
– sequence: 3
  givenname: Yunhong
  surname: Shi
  fullname: Shi, Yunhong
  organization: Trinity College Dublin
– sequence: 4
  givenname: Liwen
  surname: Xiao
  fullname: Xiao, Liwen
  email: liwen.xiao@tcd.ie
  organization: Trinity College Dublin
– sequence: 5
  givenname: Luming
  surname: Yang
  fullname: Yang, Luming
  organization: Trinity College Dublin
– sequence: 6
  givenname: John J.
  orcidid: 0000-0002-3229-8038
  surname: Boland
  fullname: Boland, John J.
  email: jboland@tcd.ie
  organization: Trinity College Dublin
– sequence: 7
  givenname: Jing Jing
  orcidid: 0000-0001-5721-7989
  surname: Wang
  fullname: Wang, Jing Jing
  email: jjwang@tcd.ie
  organization: AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36006854$$D View this record in MEDLINE/PubMed
BookMark eNp1kVFrFDEUhYNU7Lb67JsEfBHKbJNMkpl5EZZStVCxqAXfwt3MnW7KTLIm2UL_hL-5WXZdVPApgXzn3HtyTsiRDx4Jec3ZnDPBz8GmOaY8F5ZxpfgzMuNKsEq1ih-RGWO8rrpa_zgmJyndM8ZEzdoX5LjWjOlWyRn5tRhtWIWR3kTMESFP6DPNgV6ObnIeMtK8QnrlM8YBI3qLNAz0s7Mx0EXfu-wekN5AzM6OmKjzO74vNm5wFrIL_qBYj5AKmOhtcv6OfoUJPP22RptjSDasH1-S5wOMCV_tz1Ny--Hy-8Wn6vrLx6uLxXUFUjW56kCodimF7CRfNv1gJdO91eXSgFKNBQG1xkbJvgRmTGrQrIalYFZwqXtdn5L3O9_1Zjlhb8u2EUazjm6C-GgCOPP3i3crcxceTCeVFIoVg3d7gxh-bkoFZnLJ4jiCx7BJRjRMN2V4vZ319h_0PmyiL_EKxUXbqq5ThTrfUeWbUoo4HJbhzGy7NqVrs1Xvuy6KN39mOPC_yy3A2Q7YKg8z_2f3BO5tuWU
CitedBy_id crossref_primary_10_1016_j_marpolbul_2023_114887
crossref_primary_10_1021_acs_est_2c05989
crossref_primary_10_1016_j_watres_2023_120243
crossref_primary_10_1016_j_envpol_2024_124362
crossref_primary_10_1016_j_cej_2023_143620
crossref_primary_10_1021_acsestengg_3c00255
crossref_primary_10_1038_s41598_024_54003_1
crossref_primary_10_3390_s23020641
crossref_primary_10_1016_j_chemgeo_2024_122240
crossref_primary_10_1016_j_jece_2023_109462
crossref_primary_10_1080_05704928_2024_2311130
crossref_primary_10_1016_j_scitotenv_2023_161689
crossref_primary_10_1016_j_envpol_2024_123860
crossref_primary_10_3390_s23052366
crossref_primary_10_1016_j_jhazmat_2024_134865
crossref_primary_10_1038_s44221_023_00191_5
crossref_primary_10_1007_s10311_024_01731_5
crossref_primary_10_1111_1541_4337_13315
crossref_primary_10_1016_j_chemosphere_2024_141305
crossref_primary_10_1016_j_fpsl_2024_101307
crossref_primary_10_1038_s41598_023_37900_9
crossref_primary_10_1016_j_jhazmat_2024_133559
crossref_primary_10_1016_j_scitotenv_2024_172648
Cites_doi 10.1016/j.trac.2018.10.029
10.1021/acs.est.7b04512
10.1021/acsomega.8b03675
10.1038/s41559-017-0116
10.1021/ma00020a032
10.1021/ma00112a050
10.1016/j.jhazmat.2021.127861
10.1039/C6AY02542K
10.1021/acs.est.8b01517
10.1016/j.scitotenv.2018.03.051
10.1002/pol.1978.180160704
10.1016/j.envpol.2018.01.024
10.1016/j.watres.2017.11.011
10.1080/19440049.2021.1989498
10.1038/s41598-017-10813-0
10.1016/j.jhazmat.2017.10.014
10.1016/j.marenvres.2015.06.014
10.2903/j.efsa.2012.2588
10.1016/j.scitotenv.2018.08.353
10.1016/j.jhazmat.2021.126074
10.1016/j.trac.2018.12.004
10.1016/S0924-2244(02)00031-6
10.1039/C6AY02302A
10.1186/s13765-020-00511-3
10.1016/j.chemosphere.2020.126493
10.1021/acs.chemrev.1c00178
10.1016/j.jhazmat.2021.127961
10.1126/science.1254065
10.1021/acs.est.9b03105
10.3791/62545
10.1126/sciadv.abd1211
10.1016/j.scitotenv.2021.147155
10.3390/su122410378
10.1016/j.scitotenv.2021.151685
10.1126/science.abb5979
10.1016/j.watres.2019.115082
10.1021/je7006567
10.1098/rsos.140317
10.1016/S0032-3861(02)00053-8
10.1007/s00244-017-0415-8
10.1021/acs.est.0c02317
10.1007/s00216-017-0358-y
10.1080/10934529.2018.1455381
10.1016/j.chemosphere.2020.126787
10.1016/j.envpol.2011.08.052
10.1038/srep46173
10.1002/app.25922
10.1080/02652039509374298
10.1126/sciadv.1700782
10.1038/s43016-020-00171-y
10.1016/j.watres.2018.05.027
10.1038/s41565-021-00998-x
10.1016/j.cej.2020.128208
10.1021/acs.est.8b05297
10.2306/scienceasia1513-1874.2007.33.469
10.2903/j.efsa.2016.4593
10.1021/jo01200a013
10.1016/0147-6513(89)90016-X
10.1007/s00216-016-9956-3
10.1016/j.jcis.2017.06.040
10.1201/9781482293821
10.1016/j.marpolbul.2018.02.039
10.1021/acs.est.6b06155
10.1126/science.abe5041
10.1016/j.molliq.2019.112101
10.1016/j.scitotenv.2017.02.017
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
Copyright American Chemical Society Sep 6, 2022
2022 The Authors. Published by American Chemical Society 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
– notice: Copyright American Chemical Society Sep 6, 2022
– notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
5PM
DOI 10.1021/acs.est.2c01551
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 12168
ExternalDocumentID 10_1021_acs_est_2c01551
36006854
c508470950
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 12/RC/2278_P2
– fundername: ;
  grantid: 201506210089
– fundername: ;
  grantid: CF20180870
– fundername: ;
  grantid: NA
– fundername: ;
  grantid: CF20211729
– fundername: ;
  grantid: 20/FIP/PL/8733
– fundername: ;
  grantid: 201608300005
– fundername: ;
  grantid: 16/IA/4462
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
55A
5GY
5VS
63O
6TJ
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
XZL
YZZ
ZCA
53G
AAHBH
ABJNI
ABQRX
ADUKH
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
5PM
ID FETCH-LOGICAL-a457t-9a258b424941b7dfc406dc6dfc7a557ca2a36e754d2300046a603ab20c2146d63
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Tue Sep 17 20:41:14 EDT 2024
Thu Sep 05 04:55:22 EDT 2024
Fri Sep 13 06:35:13 EDT 2024
Fri Aug 23 01:07:46 EDT 2024
Wed Oct 02 05:29:33 EDT 2024
Thu Sep 08 04:15:34 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords alcohol pretreatment
microplastic
microadditive particles
hit quality index
Raman spectroscopy
Language English
License Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a457t-9a258b424941b7dfc406dc6dfc7a557ca2a36e754d2300046a603ab20c2146d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3229-8038
0000-0001-5721-7989
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9454250
PMID 36006854
PQID 2712885995
PQPubID 45412
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9454250
proquest_miscellaneous_2706723036
proquest_journals_2712885995
crossref_primary_10_1021_acs_est_2c01551
pubmed_primary_36006854
acs_journals_10_1021_acs_est_2c01551
PublicationCentury 2000
PublicationDate 2022-09-06
PublicationDateYYYYMMDD 2022-09-06
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
Sheftel V. O. (ref25/cit25) 2000
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1016/j.trac.2018.10.029
– ident: ref77/cit77
– ident: ref28/cit28
  doi: 10.1021/acs.est.7b04512
– ident: ref14/cit14
  doi: 10.1021/acsomega.8b03675
– ident: ref15/cit15
  doi: 10.1038/s41559-017-0116
– ident: ref36/cit36
  doi: 10.1021/ma00020a032
– ident: ref39/cit39
  doi: 10.1021/ma00112a050
– ident: ref55/cit55
  doi: 10.1016/j.jhazmat.2021.127861
– ident: ref60/cit60
  doi: 10.1039/C6AY02542K
– ident: ref61/cit61
  doi: 10.1021/acs.est.8b01517
– ident: ref74/cit74
  doi: 10.1016/j.scitotenv.2018.03.051
– ident: ref35/cit35
  doi: 10.1002/pol.1978.180160704
– ident: ref12/cit12
  doi: 10.1016/j.envpol.2018.01.024
– ident: ref31/cit31
  doi: 10.1016/j.watres.2017.11.011
– ident: ref27/cit27
  doi: 10.1080/19440049.2021.1989498
– ident: ref72/cit72
  doi: 10.1038/s41598-017-10813-0
– ident: ref20/cit20
  doi: 10.1016/j.jhazmat.2017.10.014
– ident: ref63/cit63
  doi: 10.1016/j.marenvres.2015.06.014
– ident: ref69/cit69
  doi: 10.2903/j.efsa.2012.2588
– ident: ref73/cit73
  doi: 10.1016/j.scitotenv.2018.08.353
– ident: ref26/cit26
  doi: 10.1016/j.jhazmat.2021.126074
– ident: ref40/cit40
– ident: ref65/cit65
  doi: 10.1016/j.trac.2018.12.004
– ident: ref23/cit23
– ident: ref24/cit24
  doi: 10.1016/S0924-2244(02)00031-6
– ident: ref57/cit57
  doi: 10.1039/C6AY02302A
– ident: ref67/cit67
  doi: 10.1186/s13765-020-00511-3
– ident: ref29/cit29
  doi: 10.1016/j.chemosphere.2020.126493
– ident: ref9/cit9
  doi: 10.1021/acs.chemrev.1c00178
– ident: ref54/cit54
  doi: 10.1016/j.jhazmat.2021.127961
– ident: ref75/cit75
– ident: ref2/cit2
  doi: 10.1126/science.1254065
– ident: ref10/cit10
  doi: 10.1021/acs.est.9b03105
– ident: ref38/cit38
  doi: 10.3791/62545
– ident: ref53/cit53
  doi: 10.1126/sciadv.abd1211
– ident: ref64/cit64
  doi: 10.1016/j.scitotenv.2021.147155
– ident: ref58/cit58
  doi: 10.3390/su122410378
– ident: ref71/cit71
– ident: ref47/cit47
  doi: 10.1016/j.scitotenv.2021.151685
– ident: ref4/cit4
  doi: 10.1126/science.abb5979
– ident: ref21/cit21
  doi: 10.1016/j.watres.2019.115082
– ident: ref43/cit43
  doi: 10.1021/je7006567
– ident: ref34/cit34
  doi: 10.1098/rsos.140317
– ident: ref59/cit59
– ident: ref49/cit49
  doi: 10.1016/S0032-3861(02)00053-8
– ident: ref62/cit62
  doi: 10.1007/s00244-017-0415-8
– ident: ref11/cit11
  doi: 10.1021/acs.est.0c02317
– ident: ref18/cit18
– ident: ref66/cit66
  doi: 10.1007/s00216-017-0358-y
– ident: ref32/cit32
  doi: 10.1080/10934529.2018.1455381
– ident: ref46/cit46
– ident: ref48/cit48
  doi: 10.1016/j.chemosphere.2020.126787
– ident: ref52/cit52
  doi: 10.1016/j.envpol.2011.08.052
– ident: ref30/cit30
  doi: 10.1038/srep46173
– ident: ref50/cit50
  doi: 10.1002/app.25922
– ident: ref19/cit19
  doi: 10.1080/02652039509374298
– ident: ref16/cit16
  doi: 10.1126/sciadv.1700782
– ident: ref1/cit1
– ident: ref37/cit37
  doi: 10.1038/s43016-020-00171-y
– ident: ref56/cit56
  doi: 10.1016/j.watres.2018.05.027
– ident: ref3/cit3
  doi: 10.1038/s41565-021-00998-x
– ident: ref17/cit17
– ident: ref8/cit8
  doi: 10.1016/j.cej.2020.128208
– ident: ref13/cit13
  doi: 10.1021/acs.est.8b05297
– ident: ref44/cit44
  doi: 10.2306/scienceasia1513-1874.2007.33.469
– ident: ref70/cit70
  doi: 10.2903/j.efsa.2016.4593
– ident: ref42/cit42
  doi: 10.1021/jo01200a013
– ident: ref68/cit68
  doi: 10.1016/0147-6513(89)90016-X
– ident: ref7/cit7
  doi: 10.1007/s00216-016-9956-3
– ident: ref22/cit22
  doi: 10.1016/j.jcis.2017.06.040
– volume-title: Indirect Food Additives and Polymers: Migration and Toxicology
  year: 2000
  ident: ref25/cit25
  doi: 10.1201/9781482293821
  contributor:
    fullname: Sheftel V. O.
– ident: ref41/cit41
  doi: 10.1016/j.marpolbul.2018.02.039
– ident: ref33/cit33
  doi: 10.1021/acs.est.6b06155
– ident: ref5/cit5
  doi: 10.1126/science.abe5041
– ident: ref45/cit45
  doi: 10.1016/j.molliq.2019.112101
– ident: ref76/cit76
– ident: ref51/cit51
  doi: 10.1016/j.scitotenv.2017.02.017
SSID ssj0002308
Score 2.559911
Snippet Raman spectroscopy is an indispensable tool in the analysis of microplastics smaller than 20 μm. However, due to its limitation, Raman spectroscopy may be...
Raman spectroscopy is an indispensable tool in the analysis of microplastics smaller than 20 μm. However, due to its limitation, Raman spectroscopy may be...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 12158
SubjectTerms Additives
Contaminants in Aquatic and Terrestrial Environments
Environmental Monitoring - methods
Health risks
Interference
Microplastics
Plastic pollution
Plastics - chemistry
Polyethylene
Polyethylene - chemistry
Polyethylenes
Polypropylene
Polypropylenes - analysis
Polypropylenes - chemistry
Raman spectra
Raman spectroscopy
Spectroscopy
Spectrum analysis
Spectrum Analysis, Raman
Water Pollutants, Chemical - chemistry
Title Alcohol Pretreatment to Eliminate the Interference of Micro Additive Particles in the Identification of Microplastics Using Raman Spectroscopy
URI http://dx.doi.org/10.1021/acs.est.2c01551
https://www.ncbi.nlm.nih.gov/pubmed/36006854
https://www.proquest.com/docview/2712885995/abstract/
https://www.proquest.com/docview/2706723036/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC9454250
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BucCBj0IhUJCReuCSZePYTnJcVVtVSEUVpdLeoontFVUhu2qyB_gR_GZmnGy22xWCW5RMEtkZ28-ZN28Ajnxic609xob2P7HCeULzoEpjzOeyqNAVruBE4bPP5vRSfZrp2UYs-m4EXyYf0TYjmiBH0obl_T48kMwfZBR0fDFMuoSk83WxgiI1s0HFZ-cBvAzZZnsZ2sGWdymSt9ackycdW6sJUoVMNbkerdpqZH_tCjn-uzlP4XGPPMWkc5VncM_X-_Dolh7hPhxMN2lvZNqP--Y5_J50lXTF-Y0fqOmiXYjp91AVrPWCgKQIvxf7BEKxmIszZvuJiXOBoCTO1yw8cVV39q7nKgX3GO5YEqJn9WgR-AziC_7AWlwsQ70ezqL5-QIuT6Zfj0_jvpJDjEpnbVyg1HmlaKunkipzc0swwllDBxlqnVmUmBqfaeXoO_KWHc04xUqOLdcddyY9gL16UftXIJyxqUmd10h7qbHJydL4IsHcsKPJIoIj6uKyH4lNGYLsMin5JPV72fd7BB_W379cdroefzc9XPvH5rHkgzLPWa0tgvfDZRqaHG_B2i9WbMNxbsYIEbzs3Gl4V2o4OUerCLItRxsMWPZ7-0p99S3IfxdK00Q7fv1_DX0DDyVnbHAMzBzCXnuz8m8JR7XVuzCC_gA5fhu8
link.rule.ids 230,315,786,790,891,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9gAcaCkUAi0YqQcu2eZhO8lxVW21QLcqtJX2Fjm2V1RAdtVkD_Aj-M3MOI_ttkKCW5RMHMcZzyMz8w3AoQ11KoRVvkT_x-dqFqIc5LGv0lmUFcpkJqNC4cmZHF_xj1Mx3YCgq4XBSVQ4UuWC-Ct0gfCIzqGcHETaafkHsCUS9MbJGDq-6GUvGtRp17Mgi-W0B_O5NwBpI12ta6N7JubdTMlbqudkGz73k3YZJ98Gy7oY6F938Bz_56124Elrh7JhwzhPYcOWu_D4FjrhLuyNVkVwSNpKgeoZ_B42fXXZ-Y3tE9VZPWej765HWG0ZmpXM_WxsywnZfMYmlPvHhsa4dCV23uXkseuyoTdt5pJjlv6OBdr3hCXNXHYD-6J-qJJdLFz3Hqqp-fkcrk5Gl8djv-3r4CsuktrPVCTSgqPjx8MiMTONRoXREg8SJUSiVaRiaRPBDX5OcuCVDGJVRIGmLuRGxnuwWc5L-xKYkTqWsbFCoWcVyBQppc1ClUpiuyjz4BCXOG_3ZZW7kHsU5nQS1z1v192D9x0b5IsG5ePvpPsdm6yGjRJU8ylht3nwrr-MG5WiL6q08yXRUNSbLAYPXjRc1T8rllSqI7gHyRq_9QQEAr5-pbz-6sDAMy5Q7Aav_u1F38LD8eXkND_9cPbpNTyKqJaDomNyHzbrm6U9QAurLt64TfUHKockJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BkBA8MBgMwgYYaQ-8pDSO7SSP1Wg1fmyqGJX6FjmxI6aNtFrSB_gj-Ju5c9xs3YQEb1FydRL3fPc5d_cdwIGNylRKq0OF-59Q6CpCOyjiUKcVzwptMpNRofDxiTqaiU9zOfdFYVQLgw_R4EiNC-LTql6ayjMMRO_pPNrKAS-dp78L9yS17yZAdHja218E1em6b0EWq3lP6HNrAPJIZbPpkW7BzJvZktfcz2QbZv2Du6yT88GqLQblrxucjv_7Zo_hkcejbNQp0BO4Y-sdeHiNpXAHdsdXxXAo6q1B8xR-j7r-umx6afuEddYu2PjC9QprLUN4ydxHR19WyBYVO6YcQDYyxqUtsek6N4-d1Z288RlMTmn6XywR5xOnNHNZDuyr_qFrdrp0XXyotubnM5hNxt8Oj0Lf3yHUQiZtmGku00LgBlBERWKqEsGFKRUeJFrKpNRcx8omUhj8S2kjr9Uw1gUfltSN3Kh4F7bqRW1fADOqjFVsrNS4wxqqFCWVzSKdKlI_ngVwgFOc-_XZ5C70zqOcTuK8537eA3i3VoV82bF9_F10f60qV8PyBN19ShxuAbztL-OCpSiMru1iRTIU_SbkEMDzTrP6e8WKSnakCCDZ0LlegMjAN6_UZ98dKXgmJJrf4ct_e9E3cH_6YZJ_-XjyeQ8ecCrpoCCZ2oet9nJlXyHQaovXbl39AU2iJqE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alcohol+Pretreatment+to+Eliminate+the+Interference+of+Micro+Additive+Particles+in+the+Identification+of+Microplastics+Using+Raman+Spectroscopy&rft.jtitle=Environmental+science+%26+technology&rft.au=Li%2C+Dunzhu&rft.au=Sheerin%2C+Emmet+D&rft.au=Shi%2C+Yunhong&rft.au=Xiao%2C+Liwen&rft.date=2022-09-06&rft.eissn=1520-5851&rft.volume=56&rft.issue=17&rft.spage=12158&rft_id=info:doi/10.1021%2Facs.est.2c01551&rft_id=info%3Apmid%2F36006854&rft.externalDocID=36006854
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon