Black Phosphorus: Narrow Gap, Wide Applications
The recent isolation of atomically thin black phosphorus by mechanical exfoliation of bulk layered crystals has triggered an unprecedented interest, even higher than that raised by the first works on graphene and other two-dimensionals, in the nanoscience and nanotechnology community. In this Perspe...
Saved in:
Published in | The journal of physical chemistry letters Vol. 6; no. 21; pp. 4280 - 4291 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
05.11.2015
|
Online Access | Get full text |
Cover
Loading…
Summary: | The recent isolation of atomically thin black phosphorus by mechanical exfoliation of bulk layered crystals has triggered an unprecedented interest, even higher than that raised by the first works on graphene and other two-dimensionals, in the nanoscience and nanotechnology community. In this Perspective, we critically analyze the reasons behind the surge of experimental and theoretical works on this novel two-dimensional material. We believe that the fact that black phosphorus band gap value spans over a wide range of the electromagnetic spectrum (interesting for thermal imaging, thermoelectrics, fiber optics communication, photovoltaics, etc.) that was not covered by any other two-dimensional material isolated to date, its high carrier mobility, its ambipolar field-effect, and its rather unusual in-plane anisotropy drew the attention of the scientific community toward this two-dimensional material. Here, we also review the current advances, the future directions and the challenges in this young research field. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.5b01686 |