The nearshore cradle of early vertebrate diversification

Most of what we know about the relationship between diversification and environment in ancient marine environments has come from invertebrates. The influence of habitat on vertebrate diversification thus remains a persistent question. Sallan et al. studied fossil vertebrates spanning the mid-Paleozo...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 362; no. 6413; pp. 460 - 464
Main Authors Sallan, Lauren, Friedman, Matt, Sansom, Robert S., Bird, Charlotte M., Sansom, Ivan J.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 26.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Most of what we know about the relationship between diversification and environment in ancient marine environments has come from invertebrates. The influence of habitat on vertebrate diversification thus remains a persistent question. Sallan et al. studied fossil vertebrates spanning the mid-Paleozoic, including both jawed and jawless fish (see the Perspective by Pimiento). They found that diversification occurred primarily in nearshore environments, with diversified forms later colonizing deeper marine or freshwater habitats. Furthermore, more robust forms remained in the nearshore, whereas more gracile forms moved to deeper waters. This split is similar to current relationships between form and environment in aquatic habitats. Science , this issue p. 460 ; see also p. 402 Nearshore environments hosted diversification among mid-Paleozoic vertebrates. Ancestral vertebrate habitats are subject to controversy and obscured by limited, often contradictory paleontological data. We assembled fossil vertebrate occurrence and habitat datasets spanning the middle Paleozoic (480 million to 360 million years ago) and found that early vertebrate clades, both jawed and jawless, originated in restricted, shallow intertidal-subtidal environments. Nearshore divergences gave rise to body plans with different dispersal abilities: Robust fishes shifted shoreward, whereas gracile groups moved seaward. Fresh waters were invaded repeatedly, but movement to deeper waters was contingent upon form and short-lived until the later Devonian. Our results contrast with the onshore-offshore trends, reef-centered diversification, and mid-shelf clustering observed for benthic invertebrates. Nearshore origins for vertebrates may be linked to the demands of their mobility and may have influenced the structure of their early fossil record and diversification.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0036-8075
1095-9203
1095-9203
DOI:10.1126/science.aar3689