Bioinspired Environmentally Friendly Amorphous CaCO3‑Based Transparent Composites Comprising Cellulose Nanofibers

Amorphous calcium carbonate (ACC) stabilized by acidic macromolecules is a useful material for the development of environmentally friendly composites. In this study, we synthesized transparent and mechanically tough ACC-based composite materials by the incorporation of water-dispersible cellulose de...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 3; no. 10; pp. 12722 - 12729
Main Authors Kuo, David, Nishimura, Tatsuya, Kajiyama, Satoshi, Kato, Takashi
Format Journal Article
LanguageEnglish
Published American Chemical Society 31.10.2018
Online AccessGet full text

Cover

Loading…
More Information
Summary:Amorphous calcium carbonate (ACC) stabilized by acidic macromolecules is a useful material for the development of environmentally friendly composites. In this study, we synthesized transparent and mechanically tough ACC-based composite materials by the incorporation of water-dispersible cellulose derivatives, namely, carboxymethyl cellulose (CMC) and surface-modified crystalline cellulose nanofibers (CNFs). A solution mixing method used in the present work proved to be a powerful and efficient method for the production of mechanically tough and environmentally friendly materials. Molecular-scale interactions between carboxyl groups and Ca2+ ions induce homogeneous dispersion of CNFs in the composites, and this gives composite films with high transparency and high mechanical properties. The composite films of CMC, CNFs, and ACC at the mixture ratios of 40, 40, and 20 wt %, showed high mechanical properties of 15.8 ± 0.93 GPa for the Young’s modulus and 268 ± 20 MPa for the tensile strength. These designed materials that are based on ACC may open up new opportunities in many fields in applications that require the use of environmentally friendly, biodegradable, mechanically tough, and transparent composite materials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.8b02014