Sustainable Setups for the Biocatalytic Production and Scale-Up of Panthenyl Monoacyl Esters under Solvent-Free Conditions

A sustainable scaling-up process for the biocatalytic production of new bioactive provitamin-B5 monoacyl esters has been demonstrated. A solvent-free reaction protocol, based on the formation of eutectic mixtures between neat substrates, renders highly efficient direct esterification of free fatty a...

Full description

Saved in:
Bibliographic Details
Published inACS sustainable chemistry & engineering Vol. 11; no. 14; pp. 5737 - 5747
Main Authors Nieto, Susana, Bernal, Juana M., Villa, Rocio, Garcia-Verdugo, Eduardo, Donaire, Antonio, Lozano, Pedro
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A sustainable scaling-up process for the biocatalytic production of new bioactive provitamin-B5 monoacyl esters has been demonstrated. A solvent-free reaction protocol, based on the formation of eutectic mixtures between neat substrates, renders highly efficient direct esterification of free fatty acids (i.e., from C6 to C18 alkyl-chain length) with panthenol catalyzed by lipase. The scale-up from 0.5 to 500 g was evaluated by means of using several reaction systems (i.e., ultrasound assistance, orbital shaking, rotary evaporator, and mechanical stirring coupled to vacuum). For all reactor systems, the yield in panthenyl monoacyl esters was improved by increasing the length of the alkyl chain of the fatty acid (i.e., from 63% yield for panthenyl butyrate to 83% yield for panthenyl myristate). The best results (87–95% product yield, for all cases) were obtained upon a scale-up (50–500 g size) and when a vacuum system was coupled to the biocatalytic reaction unit. Under the optimized conditions, a 5-fold reduction of the amount of biocatalysts with respect to reactors without vacuum was achieved. The recovery and reuse of the immobilized enzyme for five operation cycles were also demonstrated. Finally, different metrics have been applied to assess the greenness of the solvent-free biocatalytic synthesis of panthenyl monoesters here reported.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.3c00266