Systematic Identification of Protein Phosphorylation-Mediated Interactions

Protein phosphorylation is a key regulatory mechanism involved in nearly every eukaryotic cellular process. Increasingly sensitive mass spectrometry approaches have identified hundreds of thousands of phosphorylation sites, but the functions of a vast majority of these sites remain unknown, with few...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteome research Vol. 20; no. 2; pp. 1359 - 1370
Main Authors Floyd, Brendan M, Drew, Kevin, Marcotte, Edward M
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 05.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Protein phosphorylation is a key regulatory mechanism involved in nearly every eukaryotic cellular process. Increasingly sensitive mass spectrometry approaches have identified hundreds of thousands of phosphorylation sites, but the functions of a vast majority of these sites remain unknown, with fewer than 5% of sites currently assigned a function. To increase our understanding of functional protein phosphorylation we developed an approach (phospho-DIFFRAC) for identifying the phosphorylation-dependence of protein assemblies in a systematic manner. A combination of nonspecific protein phosphatase treatment, size-exclusion chromatography, and mass spectrometry allowed us to identify changes in protein interactions after the removal of phosphate modifications. With this approach we were able to identify 316 proteins involved in phosphorylation-sensitive interactions. We recovered known phosphorylation-dependent interactors such as the FACT complex and spliceosome, as well as identified novel interactions such as the tripeptidyl peptidase TPP2 and the supraspliceosome component ZRANB2. More generally, we find phosphorylation-dependent interactors to be strongly enriched for RNA-binding proteins, providing new insight into the role of phosphorylation in RNA binding. By searching directly for phosphorylated amino acid residues in mass spectrometry data, we identified the likely regulatory phosphosites on ZRANB2 and FACT complex subunit SSRP1. This study provides both a method and resource for obtaining a better understanding of the role of phosphorylation in native macromolecular assemblies. All mass spectrometry data are available through PRIDE (accession #PXD021422).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1535-3893
1535-3907
DOI:10.1021/acs.jproteome.0c00750