Synthesis of Ethylene Carbonate by Urea Transesterification Using Zeolitic Imidazolate Framework Derived Fe-Doped ZnO Catalysts

The development of environmentally friendly and efficient methods for the synthesis of ethylene carbonate (EC) is crucial for advancing carbon capture, utilization, and storage technologies. Herein, we present the synthesis of EC through the transesterification of urea with ethylene glycol (EG) usin...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 8; no. 51; pp. 48704 - 48710
Main Authors Lee, Sumin, Lee, Hyun Joo, Chung, Seung Hwan, Lee, Je Seung, Lim, Sung Yul
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.12.2023
Online AccessGet full text

Cover

Loading…
More Information
Summary:The development of environmentally friendly and efficient methods for the synthesis of ethylene carbonate (EC) is crucial for advancing carbon capture, utilization, and storage technologies. Herein, we present the synthesis of EC through the transesterification of urea with ethylene glycol (EG) using a zeolitic imidazolate framework (ZIF) derived Fe-doped ZnO catalyst (Fe;ZnO–ZIF). The Fe;ZnO–ZIF catalyst, prepared by incorporating Fe dopant atoms into a ZnO–ZIF template, demonstrates excellent catalytic activity, achieving high conversion of reactants and superior selectivity toward EC at 160 °C for 150 min under an applied vacuum (160 mmHg). Based on the thermogravimetric, X-ray spectroscopic, and temperature-programmed desorption analysis, the simultaneous presence of strong Lewis acidic and basic sites in Fe;ZnO-ZIF enables its excellent catalytic performance toward EC synthesis with high selectivity. Acidic sites activate the carbon center in urea, while basic sites facilitate the nucleophilic attack on urea by deprotonation of EG. This synergistic reaction pathway resulting from the interaction between the strong Lewis acidic and basic sites promotes nucleophilic attacks of EG on urea, leading to significantly higher conversion efficiency and selectivity, compared to the commercial benchmark ZnO. Although the establishment of a continuous reaction system which takes into account cyclability and stability of the catalysts is further required in the future, our research reported herein provides valuable insights into the design of synergistic, localized active sites for EC synthesis and contributes to the development of sustainable carbon utilization technologies for achievement of net-zero emissions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c05023