PSSP-MFFNet: A Multifeature Fusion Network for Protein Secondary Structure Prediction
Protein secondary structure prediction (PSSP) is a fundamental task in modern bioinformatics research and is particularly important for uncovering the functional mechanisms of proteins. To improve the accuracy of PSSP, various general and essential features generated from amino acid sequences are of...
Saved in:
Published in | ACS omega Vol. 9; no. 5; pp. 5985 - 5994 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.02.2024
|
Online Access | Get full text |
Cover
Loading…
Summary: | Protein secondary structure prediction (PSSP) is a fundamental task in modern bioinformatics research and is particularly important for uncovering the functional mechanisms of proteins. To improve the accuracy of PSSP, various general and essential features generated from amino acid sequences are often used for predicting the secondary structure. In this paper, we propose PSSP-MFFNet, a deep learning-based multi-feature fusion network for PSSP, which incorporates a multi-view deep learning architecture with the multiple sequence alignment (MSA) Transformer to efficiently capture global and local features of protein sequences. In practice, PSSP-MFFNet adopts a multi-feature fusion strategy, integrating different features generated from protein sequences, including MSA, sequence information, evolutionary information, and hidden state information. Moreover, we employ the MSA Transformer to interleave row and column attention across the input MSA. A hybrid network architecture of convolutional neural networks and long short-term memory networks is applied to extract high-level features after feature fusion. Furthermore, we introduce a transformer encoder to enhance the extracted high-level features. Comparative experimental results on independent tests demonstrate that PSSP-MFFNet has excellent generalization ability, outperforming other state-of-the-art PSSP models by an average of 1% on public benchmarks, including CASP12, CASP13, CASP14, TEST2018, and CB513. Our method can contribute to a better understanding of the biological functions of proteins, which has significant implications for drug discovery, disease diagnosis, and protein engineering. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.3c10230 |