Use of historical information in a maximum-likelihood framework
This paper discusses flood-quantile estimators which can employ historical and paleoflood information, both when the magnitudes of historical flood peaks are known, and when only threshold-exceedance information is available. Maximum likelihood, quasi-maximum likelihood and curve fitting methods for...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 96; no. 1; pp. 215 - 223 |
---|---|
Main Authors | , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.12.1987
Elsevier Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper discusses flood-quantile estimators which can employ historical and paleoflood information, both when the magnitudes of historical flood peaks are known, and when only threshold-exceedance information is available. Maximum likelihood, quasi-maximum likelihood and curve fitting methods for simultaneous estimation of 1, 2 and 3 unknown parameters are examined. The information contained in a 100 yr record of historical observations, during which the flood perception threshold was near the 10 yr flood level (i.e., on average, one flood in ten is above the threshold and hence is recorded), is equivalent to roughly 43, 64 and 78 years of systematic record in terms of the improvement of the precision of 100 yr flood estimators when estimating 1, 2 and 3 parameters, respectively. With the perception threshold at the 100 yr flood level, the historical data was worth 13, 20 and 46 years of systematic data when estimating 1, 2 and 3 parameters, respectively. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0022-1694 1879-2707 |
DOI: | 10.1016/0022-1694(87)90154-5 |