Photocatalytic Substrate Oxidation Catalyzed by a Ruthenium(II) Complex with a Phenazine Moiety as the Active Site Using Dioxygen as a Terminal Oxidant

We have developed photocatalytic oxidation of aromatic substrates using O2 as a terminal oxidant to afford only 2e–-oxidized products without the reductive activation of O2 in acidic water under visible-light irradiation. A RuII complex (1) bearing a pyrazine moiety as the active site in tetrapyrido...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 146; no. 48; pp. 33022 - 33034
Main Authors Ishizuka, Tomoya, Nishi, Taichiro, Namura, Nanase, Kotani, Hiroaki, Osakada, Yasuko, Fujitsuka, Mamoru, Shiota, Yoshihito, Yoshizawa, Kazunari, Kojima, Takahiko
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have developed photocatalytic oxidation of aromatic substrates using O2 as a terminal oxidant to afford only 2e–-oxidized products without the reductive activation of O2 in acidic water under visible-light irradiation. A RuII complex (1) bearing a pyrazine moiety as the active site in tetrapyrido­[3,2-a:2′,3′-c:3″,2″-h:2‴,3‴-j]­phenazine (tpphz) as a ligand was employed as a photocatalyst. The active species for the photocatalysis was revealed to be not complex 1 itself but the protonated form, 1-H+, protonated at the vacant diimine site of tpphz. Upon photoexcitation in the presence of an organic substrate, 1-H+ was converted to the corresponding dihydro-intermediate (2-H+), where the pyrazine moiety of the ligand received 2e– and 2H+ from the substrate. 2-H+ was facilely oxidized by O2 to recover 1-H+. Consequently, an oxidation product of the substrate and H2O2 derived from dioxygen reduction were obtained; however, the H2O2 formed was also used for oxidation of 2-H+. In the oxidation of benzyl alcohol to benzaldehyde, the turnover number reached 240 for 10 h, and the quantum yield was determined to be 4.0%. The absence of ring-opening products in the oxidation of cyclobutanol suggests that the catalytic reaction proceeds through a mechanism involving formal hydride transfer. Mechanistic studies revealed that the photocatalytic substrate oxidation by 1-H+ was achieved in neither the lowest singlet excited state nor triplet excited state (S1 or T1) but in the second lowest singlet excited state (S2), i.e., 1(π–π*)* of the tpphz ligand. Thus, the photocatalytic substrate oxidation by 1-H+ can be categorized into unusual anti-Kasha photocatalysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.4c09962