Transcriptional Activity of a Fluorinated Vitamin D Analog on VDR-RXR-Mediated Gene Expression

The transcriptional activity of the hexafluorinated derivative of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 [F6-1,25-(OH)2D3], was examined in cultured cells by a transient expression assay (CAT assay) using expression vectors for the rat nuclear...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 34; no. 1; pp. 370 - 377
Main Authors Sasaki, Haruna, Harada, Hideyuki, Handa, Yuki, Morino, Hikaru, Suzawa, Miyuki, Shimpo, Emiko, Katsumata, Takashi, Masuhiro, Yoshikazu, Matsuda, Kouichiro
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.01.1995
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The transcriptional activity of the hexafluorinated derivative of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 [F6-1,25-(OH)2D3], was examined in cultured cells by a transient expression assay (CAT assay) using expression vectors for the rat nuclear vitamin D3 receptor (VDR) and the rat 9-cis-retinoic acid receptor (RXR beta), and a reporter plasmid containing a consensus vitamin D3 response element (VDRE) consisting of two directly repeated AGGTCA motifs spaced by 3 bp (DR3). At physiological concentrations, the transcriptional activity of F6-1,25-(OH)2D3 was 2-4 times more potent than that of 1,25-(OH)2D3 in both nontarget (HeLa) and target (UMR106) cells for 1,25-(OH)2D3. The transcriptional activity of F6-1,25-(OH)2D3 was also higher when the endogenous target gene (osteopontin), which has a VDRE related to the DR3 in its promoter, was induced. A gel-shift assay using DR3 as a probe and in vitro synthesized receptors showed that the ligand-induced DNA binding of VDR required RXR to form a heterodimer. Moreover, in this assay we found that F6-1,25-(OH)2D3 induced the receptor-DNA complex at a 10-fold lower concentration than 1,25-(OH)2D3 without influencing the dissociation kinetics. However, the binding affinity of F6-1,25-(OH)2D3 for VDR was slightly lower than that of 1,25-(OH)2D3. The increased DNA binding of ligand-bound VDR by introducing hexafluorines into 1,25-(OH)2D3 may potentiate the transcriptional activity. Thus, the higher biological activity of F6-1,25-(OH)2D3 may be exerted at least in part by enhanced transcriptional activity.
Bibliography:ark:/67375/TPS-QGCN8VX8-6
istex:915108E2247D8F6D833B85438B799C85DA76B3B6
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00001a045