Daptomycin in Combination with Ceftolozane-Tazobactam or Cefazolin against Daptomycin-Susceptible and -Nonsusceptible Staphylococcus aureus in an In Vitro, Hollow-Fiber Model

Ceftolozane-tazobactam (TOL-TAZ) is a novel cephalosporin/beta-lactamase inhibitor with activity against several Gram-negative pathogens. Daptomycin (DAP) has demonstrated synergistic activity with beta-lactams against methicillin-resistant Staphylococcus aureus (MRSA) isolates with reduced lipopept...

Full description

Saved in:
Bibliographic Details
Published inAntimicrobial agents and chemotherapy Vol. 60; no. 7; pp. 3970 - 3975
Main Authors Smith, Jordan R, Arya, Anu, Yim, Juwon, Barber, Katie E, Hallesy, Jessica, Singh, Nivedita B, Rybak, Michael J
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ceftolozane-tazobactam (TOL-TAZ) is a novel cephalosporin/beta-lactamase inhibitor with activity against several Gram-negative pathogens. Daptomycin (DAP) has demonstrated synergistic activity with beta-lactams against methicillin-resistant Staphylococcus aureus (MRSA) isolates with reduced lipopeptide and glycopeptide susceptibilities. Our objective was to determine if DAP and TOL-TAZ possess synergy in hollow-fiber pharmacokinetic/pharmacodynamic (PK/PD) models. One isogenic pair of daptomycin-susceptible and daptomycin-nonsusceptible MRSA strains was evaluated. DAP, TOL-TAZ, and cefazolin (CFZ) MIC determinations were performed. DAP MIC determinations were also performed in the presence of subinhibitory concentrations of TOL-TAZ and CFZ. Ninety-six-hour in vitro models were run, simulating DAP at 10 mg/kg of body weight/day; TOL-TAZ at 1,500 mg every 8 h; TOL at 1,000 mg every 8 h; and DAP combined with TOL-TAZ (DAP+TOL-TAZ), DAP+TOL, DAP+TAZ, and DAP+CFZ at 2,000 mg every 8 h. DAP MICs were 0.5 and 4 μg/ml for strains R8845 and R8846, respectively. In the presence of CFZ, R8845 and R8846 DAP MICs were reduced 8-fold and 16-fold, respectively. TOL and TAZ had no effect on DAP MICs. PK/PD models demonstrated bactericidal activity with DAP+CFZ against both strains. The combination of DAP+TOL-TAZ was bactericidal against R8845 but was not bactericidal against daptomycin-nonsusceptible strain R8846. DAP+TOL and DAP+TAZ were not bactericidal. No other regimens were bactericidal. DAP+TOL-TAZ did not demonstrate synergistic activity against daptomycin-nonsusceptible S. aureus but prevented daptomycin-nonsusceptible MRSA emergence. Because DAP+TOL or TAZ alone did not prevent daptomycin-nonsusceptible MRSA emergence, the combination TOL-TAZ may be necessary for synergy with DAP. DAP+CFZ demonstrated enhancement against both strains. The combination of DAP+CFZ warrants further clinical study.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Jordan R. Smith, High Point University School of Pharmacy, High Point, North Carolina, USA; Katie E. Barber, University of Mississippi School of Pharmacy, Jackson, Mississippi, USA.
Citation Smith JR, Arya A, Yim J, Barber KE, Hallesy J, Singh NB, Rybak MJ. 2016. Daptomycin in combination with ceftolozane-tazobactam or cefazolin against daptomycin-susceptible and -nonsusceptible Staphylococcus aureus in an in vitro, hollow-fiber model. Antimicrob Agents Chemother 60:3970–3975. doi:10.1128/AAC.01666-15.
ISSN:0066-4804
1098-6596
DOI:10.1128/AAC.01666-15