Electrical Conductivity in a Porous, Cubic Rare-Earth Catecholate

Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their struc...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 15; pp. 6920 - 6924
Main Authors Skorupskii, Grigorii, Dincă, Mircea
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10–5 S/cm and surface areas of up to 780 m2/g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.0c01713