Electrical Conductivity in a Porous, Cubic Rare-Earth Catecholate
Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their struc...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 15; pp. 6920 - 6924 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10–5 S/cm and surface areas of up to 780 m2/g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.0c01713 |