Electrical Conductivity in a Porous, Cubic Rare-Earth Catecholate
Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their struc...
Saved in:
Published in | Journal of the American Chemical Society Vol. 142; no. 15; pp. 6920 - 6924 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
15.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10–5 S/cm and surface areas of up to 780 m2/g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials. |
---|---|
AbstractList | Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10–⁵ S/cm and surface areas of up to 780 m²/g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials. Electrically conductive metal-organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10 S/cm and surface areas of up to 780 m /g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials. Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10 –5 S/cm and surface areas of up to 780 m 2 /g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials. Electrically conductive metal-organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10-5 S/cm and surface areas of up to 780 m2/g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials.Electrically conductive metal-organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10-5 S/cm and surface areas of up to 780 m2/g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials. Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10–5 S/cm and surface areas of up to 780 m2/g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials. |
Author | Dincă, Mircea Skorupskii, Grigorii |
AuthorAffiliation | Department of Chemistry |
AuthorAffiliation_xml | – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Grigorii surname: Skorupskii fullname: Skorupskii, Grigorii – sequence: 2 givenname: Mircea orcidid: 0000-0002-1262-1264 surname: Dincă fullname: Dincă, Mircea email: mdinca@mit.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32223159$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFr3DAQhUVJaHbT3nIOPvawTkaSZUuXQjDbJhBIKe1ZyPK4q8VrJZK8sP8-XrINTUkgp2E0nx5v5s3J0eAHJOSMwgUFRi_XxsYLsEAryj-QGRUMckFZeURmAMDySpb8hMxjXE9twST9SE44Y4xToWbkatmjTcFZ02e1H9rRJrd1aZe5ITPZDx_8GBdZPTbOZj9NwHxpQlpltUloV76fyidy3Jk-4udDPSW_vy1_1df57d33m_rqNjeFgJR3skUD1hYKOpSyaDtUFSgrO1VRkNjyRjAG0JZQNawtO4CGIaem5ICCK35Kvj7p3o_NBluLQwqm1_fBbUzYaW-cfjkZ3Er_8VtdcUpBFJPAl4NA8A8jxqQ3LlrsezPgtKVmSgohgKl3oFwWkqpCsgk9_9fWs5-_J56AxRNgg48xYPeMUND7BPU-QX1IcMLZf7h1ySTn90u5_q1PB7_7x7UfwzAl8Tr6CO0_q4g |
CitedBy_id | crossref_primary_10_1039_D1DT01990B crossref_primary_10_1002_adma_202200999 crossref_primary_10_1002_ange_202317413 crossref_primary_10_1002_chem_202005167 crossref_primary_10_1021_acs_inorgchem_0c01611 crossref_primary_10_1038_s41570_022_00457_8 crossref_primary_10_1039_D0SC03053H crossref_primary_10_1016_j_ccr_2021_213915 crossref_primary_10_1002_ange_202318475 crossref_primary_10_1021_acsanm_2c03643 crossref_primary_10_1002_anie_202102670 crossref_primary_10_1021_acscentsci_1c00047 crossref_primary_10_1002_ange_202309505 crossref_primary_10_1002_anse_202400024 crossref_primary_10_1007_s12274_022_4184_y crossref_primary_10_1520_MPC20210100 crossref_primary_10_1002_aoc_6830 crossref_primary_10_1016_j_molstruc_2021_130788 crossref_primary_10_1146_annurev_matsci_080619_012811 crossref_primary_10_1016_j_jwpe_2023_104223 crossref_primary_10_1021_acs_inorgchem_2c04019 crossref_primary_10_1002_adfm_202304473 crossref_primary_10_1016_j_aca_2021_339036 crossref_primary_10_1021_acsnano_1c10838 crossref_primary_10_1002_anie_202309505 crossref_primary_10_1007_s12274_020_3104_2 crossref_primary_10_1021_acs_inorgchem_2c01851 crossref_primary_10_1002_adma_202307736 crossref_primary_10_1016_j_nantod_2024_102227 crossref_primary_10_1016_j_ccr_2024_216098 crossref_primary_10_1021_acsmaterialslett_4c01102 crossref_primary_10_1021_jacs_2c00614 crossref_primary_10_1016_j_cclet_2022_107773 crossref_primary_10_1021_acs_jpclett_0c02988 crossref_primary_10_1016_j_cclet_2022_108100 crossref_primary_10_1039_D2SC04012C crossref_primary_10_1002_ange_202305526 crossref_primary_10_1002_celc_202001418 crossref_primary_10_1021_acs_inorgchem_1c00952 crossref_primary_10_1016_j_mtchem_2022_100981 crossref_primary_10_1002_adom_202100283 crossref_primary_10_1016_j_molstruc_2023_135858 crossref_primary_10_1039_D3TA04490D crossref_primary_10_1039_D3TA07120K crossref_primary_10_1021_jacs_0c09379 crossref_primary_10_1002_anie_202317413 crossref_primary_10_1039_D1CC06440A crossref_primary_10_1002_adfm_202308497 crossref_primary_10_1016_j_chempr_2020_12_007 crossref_primary_10_1002_ange_202102670 crossref_primary_10_1002_anie_202318475 crossref_primary_10_1021_acs_jpcc_1c03418 crossref_primary_10_1002_anie_202305526 crossref_primary_10_1039_D2DT02340G crossref_primary_10_1002_batt_202300536 |
Cites_doi | 10.1002/9783527821099 10.1021/ja512437u 10.1038/s41557-019-0372-0 10.1002/chem.201804280 10.1007/978-3-319-41981-7 10.1038/s41560-017-0044-5 10.1126/science.1158877 10.1002/anie.201914395 10.1021/ja502765n 10.1021/ja312380b 10.1002/chem.201103433 10.1021/jacs.9b13050 10.1039/C7TA07978H 10.1039/C5CC09385F 10.1002/chem.201705530 10.1126/sciadv.aat9180 10.1021/acscentsci.9b01006 10.1038/nmat4766 10.1039/C8CC02871K 10.1021/jacs.6b09345 10.1002/anie.201411854 10.1021/cm301194a 10.1039/C4CC00408F 10.1021/jacs.5b10999 10.1039/C8SC02049C 10.1021/jacs.8b03696 10.1021/jacs.5b10382 10.1021/jacs.9b09298 10.1021/jacs.8b06666 10.1246/cl.131090 10.1021/ja500330a 10.1021/jacs.5b10385 10.1021/acs.chemrev.9b00766 10.1021/acscentsci.9b00482 10.1021/jacs.8b03604 10.1021/ja01269a023 10.1021/jacs.7b07234 10.1039/C7TA02069D 10.1038/ncomms10942 |
ContentType | Journal Article |
Copyright | Copyright © 2020 American Chemical Society 2020 American Chemical Society |
Copyright_xml | – notice: Copyright © 2020 American Chemical Society 2020 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/jacs.0c01713 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 6924 |
ExternalDocumentID | PMC7311054 32223159 10_1021_jacs_0c01713 a913043714 |
Genre | Journal Article |
GroupedDBID | - .K2 02 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 7S9 L.6 5PM AAYWT |
ID | FETCH-LOGICAL-a450t-f8dea0cc490fe884dfe9709c8f97108ed3b52200d607b2d6f00b2e31a630e5393 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Aug 21 13:29:34 EDT 2025 Fri Jul 11 03:12:46 EDT 2025 Fri Jul 11 06:56:28 EDT 2025 Wed Feb 19 02:31:07 EST 2025 Tue Jul 01 03:22:00 EDT 2025 Thu Apr 24 23:01:44 EDT 2025 Thu Aug 27 22:10:25 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a450t-f8dea0cc490fe884dfe9709c8f97108ed3b52200d607b2d6f00b2e31a630e5393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1262-1264 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7311054 |
PMID | 32223159 |
PQID | 2384819482 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311054 proquest_miscellaneous_2985550294 proquest_miscellaneous_2384819482 pubmed_primary_32223159 crossref_primary_10_1021_jacs_0c01713 crossref_citationtrail_10_1021_jacs_0c01713 acs_journals_10_1021_jacs_0c01713 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-15 |
PublicationDateYYYYMMDD | 2020-04-15 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 Zhang A. (ref11/cit11) 2016 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 Yaghi O. M. (ref34/cit34) 2019 |
References_xml | – volume-title: Introduction to Reticular Chemistry year: 2019 ident: ref34/cit34 doi: 10.1002/9783527821099 – ident: ref8/cit8 doi: 10.1021/ja512437u – ident: ref27/cit27 doi: 10.1038/s41557-019-0372-0 – ident: ref39/cit39 doi: 10.1002/chem.201804280 – start-page: 322 volume-title: Nanowires: Building Blocks for Nanoscience and Nanotechnology year: 2016 ident: ref11/cit11 doi: 10.1007/978-3-319-41981-7 – ident: ref2/cit2 doi: 10.1038/s41560-017-0044-5 – ident: ref10/cit10 doi: 10.1126/science.1158877 – ident: ref21/cit21 doi: 10.1002/anie.201914395 – ident: ref9/cit9 doi: 10.1021/ja502765n – ident: ref17/cit17 doi: 10.1021/ja312380b – ident: ref13/cit13 doi: 10.1002/chem.201103433 – ident: ref19/cit19 doi: 10.1021/jacs.9b13050 – ident: ref25/cit25 doi: 10.1039/C7TA07978H – ident: ref33/cit33 doi: 10.1039/C5CC09385F – ident: ref24/cit24 doi: 10.1002/chem.201705530 – ident: ref29/cit29 doi: 10.1126/sciadv.aat9180 – ident: ref35/cit35 doi: 10.1021/acscentsci.9b01006 – ident: ref1/cit1 doi: 10.1038/nmat4766 – ident: ref32/cit32 doi: 10.1039/C8CC02871K – ident: ref36/cit36 doi: 10.1021/jacs.6b09345 – ident: ref15/cit15 doi: 10.1002/anie.201411854 – ident: ref16/cit16 doi: 10.1021/cm301194a – ident: ref18/cit18 doi: 10.1039/C4CC00408F – ident: ref30/cit30 doi: 10.1021/jacs.5b10999 – ident: ref3/cit3 doi: 10.1039/C8SC02049C – ident: ref7/cit7 doi: 10.1021/jacs.8b03696 – ident: ref20/cit20 doi: 10.1021/jacs.5b10382 – ident: ref22/cit22 doi: 10.1021/jacs.9b09298 – ident: ref23/cit23 doi: 10.1021/jacs.8b06666 – ident: ref38/cit38 doi: 10.1246/cl.131090 – ident: ref28/cit28 doi: 10.1021/ja500330a – ident: ref14/cit14 doi: 10.1021/jacs.5b10385 – ident: ref12/cit12 doi: 10.1021/acs.chemrev.9b00766 – ident: ref5/cit5 doi: 10.1021/acscentsci.9b00482 – ident: ref6/cit6 doi: 10.1021/jacs.8b03604 – ident: ref37/cit37 doi: 10.1021/ja01269a023 – ident: ref26/cit26 doi: 10.1021/jacs.7b07234 – ident: ref31/cit31 doi: 10.1039/C7TA02069D – ident: ref4/cit4 doi: 10.1038/ncomms10942 |
SSID | ssj0004281 |
Score | 2.5359738 |
Snippet | Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a... Electrically conductive metal-organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a... Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6920 |
SubjectTerms | anisotropy Communication coordination polymers electric current electrical conductivity isotropy nitrates porous media rare earth elements |
Title | Electrical Conductivity in a Porous, Cubic Rare-Earth Catecholate |
URI | http://dx.doi.org/10.1021/jacs.0c01713 https://www.ncbi.nlm.nih.gov/pubmed/32223159 https://www.proquest.com/docview/2384819482 https://www.proquest.com/docview/2985550294 https://pubmed.ncbi.nlm.nih.gov/PMC7311054 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOMCFXd5ld5GR4ASpXNtJnGMVlUVIIMRD4hbZjq1WoBS16YVfzzhNyrYIlmsyUeSZSeYbzcw3AMfcs74J6wLDMDcRidSBlk4FzIbcWR0Zqv2A89V1dPEgLh_Dx_cG2cUKPvP8QGbcpsbzuvBlWGWRjH2S1U3v3ucfmew0MDeWEa8b3Bef9gHIjOcD0AdUudgc-U-0Of8Bf5uZnWmTyVN7Uuq2ef1I4fifg_yEjRpwku7UQzZhyRZbsJY2e962odurNuF4Y5F0WHj-12qhBBkURJGb4Wg4GZ-RdKIHhtyqkQ166G19kipP_4qJcWl34OG8d59eBPVihUCJkJaBk7lV1BiRUGelFLmzSUwTI12CgEPanGuEZZTmEY01yyNHqWaWd1TEKdow4buwUgwLuw8kZsLRjnGIMvCfa6zWEmMigh5jFSaPrgVHeOys_jDGWVXzZphz-Ku1Mlpw2lgkMzUzuV-Q8fyJ9MlM-mXKyPGJ3FFj3Aw16usgqrCosgxRikAgJCT7QiaRISZvLBEt2Js6xOxtvjjFEQa2IJ5zlZmAp-yev1MM-hV1d8wRboXi4Bta-QXrzOf2nlcy_A0r5Whi_yAAKvVh5f1vqLz_bA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB5V5VAuUJ5dysOV6AlSeR0ncQ4cVmGrLX0IQSv1FmzHVldUCdrsCsF_4a_w25jJJlt2URGXSpwiOaPEmYw933jsbwBehsT6Jp0PrMDYRKbKBEZ5HQgXhd6Z2HJDB5yPT-LRmXx3Hp2vwY_uLAx2osYn1U0S_4pdgGiCsJFbonfpalUfum9fMUKr3xy8xd-5K8T-8DQbBW0RgUDLiE8DrwqnubUy5d4pJQvv0oSnVvkUnatyRWgQgnBexDwxoog950a4sK_jkGN_iWsJZ_hbiHsExXaD7OPVsUuh-h26TlQctvvqV3tLfs_Wy37vDzC7uifzNye3fxd-LtTT7G35vDebmj37fYU58r_V3ybcaeE1G8zHwz1Yc-V92Mi6qnYPYDBs6v6QabKsKonttimfwcYl0-x9Nalm9WuWzczYsg964oIhjq0Llmkiu60u8fIQzm7kCx7BelmVbgtYIqTnfesRU6GHsc4YhQgAIZ51GkNl34MdVHPeTgN13mT4BUZY1NoqvwevOkPIbcvDTuVALq-R3l1If5nzj1wjt9PZVI4apayPLh2qLEdMJhH2SSX-IpOqCENVkcoePJ7b4eJtlIoLEfT2IFmy0IUAEZQv3ynHFw1ReRIiuIzkk3_QygvYGJ0eH-VHByeH23Bb0KoGMWpGT2F9Opm5Zwj9puZ5MwAZfLppi_0Fe7Jhrg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1La9wwEB5CAm0vfT-2TwWaU-uglWVbPvSwOLskTRtC20BuriRLZGmww3qXkPyb_pX-ss547W13S0ovgZ4M9mDL4xnNNx7pG4DXIbG-SecDKzA3kakygVFeB8JFoXcmttzQBuePB_HukXx_HB2vwfduLwwOosY71U0Rn7z6rPAtwwBRBeEFbonipetXve8uzjFLq9_t7eAn3RJiNPyS7QZtI4FAy4hPA68Kp7m1MuXeKSUL79KEp1b5FAOsckVoEIZwXsQ8MaKIPedGuLCv45DjmIlvCWf5DaoQUn43yD7_2nopVL9D2ImKw3Zt_epoKfbZejn2_QFoV9dl_hboRnfgx0JFzfqWb9uzqdm2lyvskf-1Du_C7RZms8HcL-7Bmivvw82s6273AAbDpv8PmSjLqpJYb5s2GmxcMs0Oq0k1q9-ybGbGln3SExcM0cdOWKaJ9LY6xcNDOLqWN3gE62VVuifAEiE971uP2AojjXXGKEQCCPWs05gy-x5soprzdjqo86bSLzDTorOt8nvwpjOG3LZ87NQW5PQK6a2F9Nmch-QKuc3OrnLUKFV_dOlQZTliM4nwTyrxF5lURZiyilT24PHcFhdPo5JciOC3B8mSlS4EiKh8-Uo5PmkIy5MQQWYkn_6DVl7BjcOdUf5h72D_GdwS9HODiDWj57A-nczcC0SAU_Oy8UEGX6_bYH8CK7ZkMQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+Conductivity+in+a+Porous%2C+Cubic+Rare-Earth+Catecholate&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Skorupskii%2C+Grigorii&rft.au=Dinc%C4%83%2C+Mircea&rft.date=2020-04-15&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=142&rft.issue=15&rft.spage=6920&rft.epage=6924&rft_id=info:doi/10.1021%2Fjacs.0c01713&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_0c01713 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |