Electrical Conductivity in a Porous, Cubic Rare-Earth Catecholate

Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their struc...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 142; no. 15; pp. 6920 - 6924
Main Authors Skorupskii, Grigorii, Dincă, Mircea
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 15.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10–5 S/cm and surface areas of up to 780 m2/g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials.
AbstractList Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10–⁵ S/cm and surface areas of up to 780 m²/g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials.
Electrically conductive metal-organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10 S/cm and surface areas of up to 780 m /g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials.
Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10 –5 S/cm and surface areas of up to 780 m 2 /g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials.
Electrically conductive metal-organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10-5 S/cm and surface areas of up to 780 m2/g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials.Electrically conductive metal-organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10-5 S/cm and surface areas of up to 780 m2/g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials.
Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a combination that is favorable for a variety of technological applications. The vast majority of such MOFs are highly anisotropic in both their structures and properties: Only two electrically conductive MOFs reported to date exhibit cubic structures that enable isotropic charge transport. Here we report a new family of intrinsically porous frameworks made from rare-earth nitrates and hexahydroxytriphenylene. The materials feature a novel hexanuclear secondary building unit and form cubic, porous, and intrinsically conductive structures, with electrical conductivities reaching 10–5 S/cm and surface areas of up to 780 m2/g. By expanding the list of MOFs with isotropic charge transport, these results will help us to improve our understanding of design strategies for porous electronic materials.
Author Dincă, Mircea
Skorupskii, Grigorii
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Grigorii
  surname: Skorupskii
  fullname: Skorupskii, Grigorii
– sequence: 2
  givenname: Mircea
  orcidid: 0000-0002-1262-1264
  surname: Dincă
  fullname: Dincă, Mircea
  email: mdinca@mit.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32223159$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFr3DAQhUVJaHbT3nIOPvawTkaSZUuXQjDbJhBIKe1ZyPK4q8VrJZK8sP8-XrINTUkgp2E0nx5v5s3J0eAHJOSMwgUFRi_XxsYLsEAryj-QGRUMckFZeURmAMDySpb8hMxjXE9twST9SE44Y4xToWbkatmjTcFZ02e1H9rRJrd1aZe5ITPZDx_8GBdZPTbOZj9NwHxpQlpltUloV76fyidy3Jk-4udDPSW_vy1_1df57d33m_rqNjeFgJR3skUD1hYKOpSyaDtUFSgrO1VRkNjyRjAG0JZQNawtO4CGIaem5ICCK35Kvj7p3o_NBluLQwqm1_fBbUzYaW-cfjkZ3Er_8VtdcUpBFJPAl4NA8A8jxqQ3LlrsezPgtKVmSgohgKl3oFwWkqpCsgk9_9fWs5-_J56AxRNgg48xYPeMUND7BPU-QX1IcMLZf7h1ySTn90u5_q1PB7_7x7UfwzAl8Tr6CO0_q4g
CitedBy_id crossref_primary_10_1039_D1DT01990B
crossref_primary_10_1002_adma_202200999
crossref_primary_10_1002_ange_202317413
crossref_primary_10_1002_chem_202005167
crossref_primary_10_1021_acs_inorgchem_0c01611
crossref_primary_10_1038_s41570_022_00457_8
crossref_primary_10_1039_D0SC03053H
crossref_primary_10_1016_j_ccr_2021_213915
crossref_primary_10_1002_ange_202318475
crossref_primary_10_1021_acsanm_2c03643
crossref_primary_10_1002_anie_202102670
crossref_primary_10_1021_acscentsci_1c00047
crossref_primary_10_1002_ange_202309505
crossref_primary_10_1002_anse_202400024
crossref_primary_10_1007_s12274_022_4184_y
crossref_primary_10_1520_MPC20210100
crossref_primary_10_1002_aoc_6830
crossref_primary_10_1016_j_molstruc_2021_130788
crossref_primary_10_1146_annurev_matsci_080619_012811
crossref_primary_10_1016_j_jwpe_2023_104223
crossref_primary_10_1021_acs_inorgchem_2c04019
crossref_primary_10_1002_adfm_202304473
crossref_primary_10_1016_j_aca_2021_339036
crossref_primary_10_1021_acsnano_1c10838
crossref_primary_10_1002_anie_202309505
crossref_primary_10_1007_s12274_020_3104_2
crossref_primary_10_1021_acs_inorgchem_2c01851
crossref_primary_10_1002_adma_202307736
crossref_primary_10_1016_j_nantod_2024_102227
crossref_primary_10_1016_j_ccr_2024_216098
crossref_primary_10_1021_acsmaterialslett_4c01102
crossref_primary_10_1021_jacs_2c00614
crossref_primary_10_1016_j_cclet_2022_107773
crossref_primary_10_1021_acs_jpclett_0c02988
crossref_primary_10_1016_j_cclet_2022_108100
crossref_primary_10_1039_D2SC04012C
crossref_primary_10_1002_ange_202305526
crossref_primary_10_1002_celc_202001418
crossref_primary_10_1021_acs_inorgchem_1c00952
crossref_primary_10_1016_j_mtchem_2022_100981
crossref_primary_10_1002_adom_202100283
crossref_primary_10_1016_j_molstruc_2023_135858
crossref_primary_10_1039_D3TA04490D
crossref_primary_10_1039_D3TA07120K
crossref_primary_10_1021_jacs_0c09379
crossref_primary_10_1002_anie_202317413
crossref_primary_10_1039_D1CC06440A
crossref_primary_10_1002_adfm_202308497
crossref_primary_10_1016_j_chempr_2020_12_007
crossref_primary_10_1002_ange_202102670
crossref_primary_10_1002_anie_202318475
crossref_primary_10_1021_acs_jpcc_1c03418
crossref_primary_10_1002_anie_202305526
crossref_primary_10_1039_D2DT02340G
crossref_primary_10_1002_batt_202300536
Cites_doi 10.1002/9783527821099
10.1021/ja512437u
10.1038/s41557-019-0372-0
10.1002/chem.201804280
10.1007/978-3-319-41981-7
10.1038/s41560-017-0044-5
10.1126/science.1158877
10.1002/anie.201914395
10.1021/ja502765n
10.1021/ja312380b
10.1002/chem.201103433
10.1021/jacs.9b13050
10.1039/C7TA07978H
10.1039/C5CC09385F
10.1002/chem.201705530
10.1126/sciadv.aat9180
10.1021/acscentsci.9b01006
10.1038/nmat4766
10.1039/C8CC02871K
10.1021/jacs.6b09345
10.1002/anie.201411854
10.1021/cm301194a
10.1039/C4CC00408F
10.1021/jacs.5b10999
10.1039/C8SC02049C
10.1021/jacs.8b03696
10.1021/jacs.5b10382
10.1021/jacs.9b09298
10.1021/jacs.8b06666
10.1246/cl.131090
10.1021/ja500330a
10.1021/jacs.5b10385
10.1021/acs.chemrev.9b00766
10.1021/acscentsci.9b00482
10.1021/jacs.8b03604
10.1021/ja01269a023
10.1021/jacs.7b07234
10.1039/C7TA02069D
10.1038/ncomms10942
ContentType Journal Article
Copyright Copyright © 2020 American Chemical Society 2020 American Chemical Society
Copyright_xml – notice: Copyright © 2020 American Chemical Society 2020 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/jacs.0c01713
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 6924
ExternalDocumentID PMC7311054
32223159
10_1021_jacs_0c01713
a913043714
Genre Journal Article
GroupedDBID -
.K2
02
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
YIN
7X8
7S9
L.6
5PM
AAYWT
ID FETCH-LOGICAL-a450t-f8dea0cc490fe884dfe9709c8f97108ed3b52200d607b2d6f00b2e31a630e5393
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Aug 21 13:29:34 EDT 2025
Fri Jul 11 03:12:46 EDT 2025
Fri Jul 11 06:56:28 EDT 2025
Wed Feb 19 02:31:07 EST 2025
Tue Jul 01 03:22:00 EDT 2025
Thu Apr 24 23:01:44 EDT 2025
Thu Aug 27 22:10:25 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a450t-f8dea0cc490fe884dfe9709c8f97108ed3b52200d607b2d6f00b2e31a630e5393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1262-1264
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7311054
PMID 32223159
PQID 2384819482
PQPubID 23479
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7311054
proquest_miscellaneous_2985550294
proquest_miscellaneous_2384819482
pubmed_primary_32223159
crossref_primary_10_1021_jacs_0c01713
crossref_citationtrail_10_1021_jacs_0c01713
acs_journals_10_1021_jacs_0c01713
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-15
PublicationDateYYYYMMDD 2020-04-15
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Zhang A. (ref11/cit11) 2016
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
Yaghi O. M. (ref34/cit34) 2019
References_xml – volume-title: Introduction to Reticular Chemistry
  year: 2019
  ident: ref34/cit34
  doi: 10.1002/9783527821099
– ident: ref8/cit8
  doi: 10.1021/ja512437u
– ident: ref27/cit27
  doi: 10.1038/s41557-019-0372-0
– ident: ref39/cit39
  doi: 10.1002/chem.201804280
– start-page: 322
  volume-title: Nanowires: Building Blocks for Nanoscience and Nanotechnology
  year: 2016
  ident: ref11/cit11
  doi: 10.1007/978-3-319-41981-7
– ident: ref2/cit2
  doi: 10.1038/s41560-017-0044-5
– ident: ref10/cit10
  doi: 10.1126/science.1158877
– ident: ref21/cit21
  doi: 10.1002/anie.201914395
– ident: ref9/cit9
  doi: 10.1021/ja502765n
– ident: ref17/cit17
  doi: 10.1021/ja312380b
– ident: ref13/cit13
  doi: 10.1002/chem.201103433
– ident: ref19/cit19
  doi: 10.1021/jacs.9b13050
– ident: ref25/cit25
  doi: 10.1039/C7TA07978H
– ident: ref33/cit33
  doi: 10.1039/C5CC09385F
– ident: ref24/cit24
  doi: 10.1002/chem.201705530
– ident: ref29/cit29
  doi: 10.1126/sciadv.aat9180
– ident: ref35/cit35
  doi: 10.1021/acscentsci.9b01006
– ident: ref1/cit1
  doi: 10.1038/nmat4766
– ident: ref32/cit32
  doi: 10.1039/C8CC02871K
– ident: ref36/cit36
  doi: 10.1021/jacs.6b09345
– ident: ref15/cit15
  doi: 10.1002/anie.201411854
– ident: ref16/cit16
  doi: 10.1021/cm301194a
– ident: ref18/cit18
  doi: 10.1039/C4CC00408F
– ident: ref30/cit30
  doi: 10.1021/jacs.5b10999
– ident: ref3/cit3
  doi: 10.1039/C8SC02049C
– ident: ref7/cit7
  doi: 10.1021/jacs.8b03696
– ident: ref20/cit20
  doi: 10.1021/jacs.5b10382
– ident: ref22/cit22
  doi: 10.1021/jacs.9b09298
– ident: ref23/cit23
  doi: 10.1021/jacs.8b06666
– ident: ref38/cit38
  doi: 10.1246/cl.131090
– ident: ref28/cit28
  doi: 10.1021/ja500330a
– ident: ref14/cit14
  doi: 10.1021/jacs.5b10385
– ident: ref12/cit12
  doi: 10.1021/acs.chemrev.9b00766
– ident: ref5/cit5
  doi: 10.1021/acscentsci.9b00482
– ident: ref6/cit6
  doi: 10.1021/jacs.8b03604
– ident: ref37/cit37
  doi: 10.1021/ja01269a023
– ident: ref26/cit26
  doi: 10.1021/jacs.7b07234
– ident: ref31/cit31
  doi: 10.1039/C7TA02069D
– ident: ref4/cit4
  doi: 10.1038/ncomms10942
SSID ssj0004281
Score 2.5359738
Snippet Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a...
Electrically conductive metal-organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a...
Electrically conductive metal–organic frameworks (MOFs) provide a rare example of porous materials that can efficiently transport electrical current, a...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6920
SubjectTerms anisotropy
Communication
coordination polymers
electric current
electrical conductivity
isotropy
nitrates
porous media
rare earth elements
Title Electrical Conductivity in a Porous, Cubic Rare-Earth Catecholate
URI http://dx.doi.org/10.1021/jacs.0c01713
https://www.ncbi.nlm.nih.gov/pubmed/32223159
https://www.proquest.com/docview/2384819482
https://www.proquest.com/docview/2985550294
https://pubmed.ncbi.nlm.nih.gov/PMC7311054
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOMCFXd5ld5GR4ASpXNtJnGMVlUVIIMRD4hbZjq1WoBS16YVfzzhNyrYIlmsyUeSZSeYbzcw3AMfcs74J6wLDMDcRidSBlk4FzIbcWR0Zqv2A89V1dPEgLh_Dx_cG2cUKPvP8QGbcpsbzuvBlWGWRjH2S1U3v3ucfmew0MDeWEa8b3Bef9gHIjOcD0AdUudgc-U-0Of8Bf5uZnWmTyVN7Uuq2ef1I4fifg_yEjRpwku7UQzZhyRZbsJY2e962odurNuF4Y5F0WHj-12qhBBkURJGb4Wg4GZ-RdKIHhtyqkQ166G19kipP_4qJcWl34OG8d59eBPVihUCJkJaBk7lV1BiRUGelFLmzSUwTI12CgEPanGuEZZTmEY01yyNHqWaWd1TEKdow4buwUgwLuw8kZsLRjnGIMvCfa6zWEmMigh5jFSaPrgVHeOys_jDGWVXzZphz-Ku1Mlpw2lgkMzUzuV-Q8fyJ9MlM-mXKyPGJ3FFj3Aw16usgqrCosgxRikAgJCT7QiaRISZvLBEt2Js6xOxtvjjFEQa2IJ5zlZmAp-yev1MM-hV1d8wRboXi4Bta-QXrzOf2nlcy_A0r5Whi_yAAKvVh5f1vqLz_bA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB5V5VAuUJ5dysOV6AlSeR0ncQ4cVmGrLX0IQSv1FmzHVldUCdrsCsF_4a_w25jJJlt2URGXSpwiOaPEmYw933jsbwBehsT6Jp0PrMDYRKbKBEZ5HQgXhd6Z2HJDB5yPT-LRmXx3Hp2vwY_uLAx2osYn1U0S_4pdgGiCsJFbonfpalUfum9fMUKr3xy8xd-5K8T-8DQbBW0RgUDLiE8DrwqnubUy5d4pJQvv0oSnVvkUnatyRWgQgnBexDwxoog950a4sK_jkGN_iWsJZ_hbiHsExXaD7OPVsUuh-h26TlQctvvqV3tLfs_Wy37vDzC7uifzNye3fxd-LtTT7G35vDebmj37fYU58r_V3ybcaeE1G8zHwz1Yc-V92Mi6qnYPYDBs6v6QabKsKonttimfwcYl0-x9Nalm9WuWzczYsg964oIhjq0Llmkiu60u8fIQzm7kCx7BelmVbgtYIqTnfesRU6GHsc4YhQgAIZ51GkNl34MdVHPeTgN13mT4BUZY1NoqvwevOkPIbcvDTuVALq-R3l1If5nzj1wjt9PZVI4apayPLh2qLEdMJhH2SSX-IpOqCENVkcoePJ7b4eJtlIoLEfT2IFmy0IUAEZQv3ynHFw1ReRIiuIzkk3_QygvYGJ0eH-VHByeH23Bb0KoGMWpGT2F9Opm5Zwj9puZ5MwAZfLppi_0Fe7Jhrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1La9wwEB5CAm0vfT-2TwWaU-uglWVbPvSwOLskTRtC20BuriRLZGmww3qXkPyb_pX-ss547W13S0ovgZ4M9mDL4xnNNx7pG4DXIbG-SecDKzA3kakygVFeB8JFoXcmttzQBuePB_HukXx_HB2vwfduLwwOosY71U0Rn7z6rPAtwwBRBeEFbonipetXve8uzjFLq9_t7eAn3RJiNPyS7QZtI4FAy4hPA68Kp7m1MuXeKSUL79KEp1b5FAOsckVoEIZwXsQ8MaKIPedGuLCv45DjmIlvCWf5DaoQUn43yD7_2nopVL9D2ImKw3Zt_epoKfbZejn2_QFoV9dl_hboRnfgx0JFzfqWb9uzqdm2lyvskf-1Du_C7RZms8HcL-7Bmivvw82s6273AAbDpv8PmSjLqpJYb5s2GmxcMs0Oq0k1q9-ybGbGln3SExcM0cdOWKaJ9LY6xcNDOLqWN3gE62VVuifAEiE971uP2AojjXXGKEQCCPWs05gy-x5soprzdjqo86bSLzDTorOt8nvwpjOG3LZ87NQW5PQK6a2F9Nmch-QKuc3OrnLUKFV_dOlQZTliM4nwTyrxF5lURZiyilT24PHcFhdPo5JciOC3B8mSlS4EiKh8-Uo5PmkIy5MQQWYkn_6DVl7BjcOdUf5h72D_GdwS9HODiDWj57A-nczcC0SAU_Oy8UEGX6_bYH8CK7ZkMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrical+Conductivity+in+a+Porous%2C+Cubic+Rare-Earth+Catecholate&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Skorupskii%2C+Grigorii&rft.au=Dinc%C4%83%2C+Mircea&rft.date=2020-04-15&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=142&rft.issue=15&rft.spage=6920&rft.epage=6924&rft_id=info:doi/10.1021%2Fjacs.0c01713&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_0c01713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon