Are Bond Critical Points Really Critical for Hydrogen Bonding?
Atoms in Molecules (AIM) theory is routinely used to assess hydrogen bond formation; however its stringent criteria controversially exclude some systems that otherwise appear to exhibit weak hydrogen bonds. We show that a regional analysis of the reduced density gradient, as provided by the recently...
Saved in:
Published in | Journal of chemical theory and computation Vol. 9; no. 8; pp. 3263 - 3266 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.08.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Atoms in Molecules (AIM) theory is routinely used to assess hydrogen bond formation; however its stringent criteria controversially exclude some systems that otherwise appear to exhibit weak hydrogen bonds. We show that a regional analysis of the reduced density gradient, as provided by the recently introduced Non-Covalent Interactions (NCI) index, transcends AIM theory to deliver a chemically intuitive description of hydrogen bonding for a series of 1,n-alkanediols. This regional definition of interactions overcomes the known caveat of only analyzing electron density critical points. In other words, the NCI approach is a simple and elegant generalization of the bond critical point approach, which raises the title question. Namely, is it the presence of an electron density bond critical point that defines a hydrogen bond or the general topology in the region surrounding it? |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1549-9618 1549-9626 |
DOI: | 10.1021/ct400420r |