Computational Design of Potent and Selective d‑Peptide Agonists of the Glucagon-like Peptide‑2 Receptor

Here, we designed three d-GLP-2 agonists that activated the glucagon-like peptide-2 receptor (GLP-2R) cyclic adenosine monophosphate (cAMP) accumulation without stimulating the glucagon-like peptide-1 receptor (GLP-1R). All the d-GLP-2 agonists increased the protein kinase B phosphorylated (p-AKT) e...

Full description

Saved in:
Bibliographic Details
Published inJournal of medicinal chemistry Vol. 66; no. 15; pp. 10342 - 10353
Main Authors Valiente, Pedro A., Nim, Satra, Kim, Jisun, Kim, Philip M.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Here, we designed three d-GLP-2 agonists that activated the glucagon-like peptide-2 receptor (GLP-2R) cyclic adenosine monophosphate (cAMP) accumulation without stimulating the glucagon-like peptide-1 receptor (GLP-1R). All the d-GLP-2 agonists increased the protein kinase B phosphorylated (p-AKT) expression levels in a time- and concentration-dependent manner in vitro. The most effective d-GLP-2 analogue boosted the AKT phosphorylation 2.28 times more effectively compared to the native l-GLP-2. The enhancement in the p-AKT levels induced by the d-GLP-2 analogues could be explained by GLP-2R’s more prolonged activation, given that the d-GLP-2 analogues induce a lower β-arrestin recruitment. The higher stability to protease degradation of our d-GLP-2 agonists helps us envision their potential applications in enhancing intestinal absorption and treating inflammatory bowel illness while lowering the high dosage required by the current treatments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2623
1520-4804
1520-4804
DOI:10.1021/acs.jmedchem.3c00464