Synthesis of (±)-Idarubicinone via Global Functionalization of Tetracene

Anthracyclines are archetypal representatives of the tetracyclic type II polyketide natural products that are widely used in cancer chemotherapy. Although the synthesis of this class of compounds has been a subject of several investigations, all known approaches are based on annulations, relying on...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 141; no. 26; pp. 10193 - 10198
Main Authors Dennis, David G, Okumura, Mikiko, Sarlah, David
Format Journal Article
LanguageEnglish
Published WASHINGTON American Chemical Society 03.07.2019
Amer Chemical Soc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Anthracyclines are archetypal representatives of the tetracyclic type II polyketide natural products that are widely used in cancer chemotherapy. Although the synthesis of this class of compounds has been a subject of several investigations, all known approaches are based on annulations, relying on the union of properly prefunctionalized building blocks. Herein, we describe a conceptually different approach using a polynuclear arene as a starting template, ideally requiring only functional decorations to reach the desired target molecule. Specifically, tetracene was converted to (±)-idarubicinone, the aglycone of the FDA approved anthracycline idarubicin, through the judicious orchestration of Co- and Ru-catalyzed arene oxidation and arenophile-mediated dearomative hydroboration. Such a global functionalization strategy, the combination of site-selective arene and dearomative functionalization, provided the key anthracycline framework in five operations and enabled rapid and controlled access to (±)-idarubicinone.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.9b05370