Highly Galloylated Tannin Fractions from Witch Hazel (Hamamelis virginiana) Bark: Electron Transfer Capacity, In Vitro Antioxidant Activity, and Effects on Skin-Related Cells

Witch hazel (Hammamelis virginiana) bark is a rich source of both condensed and hydrolizable oligomeric tannins. From a polyphenolic extract soluble in both ethyl acetate and water, we have generated fractions rich in pyrogallol-containing polyphenols (proanthocyanidins, gallotannins, and gallates)....

Full description

Saved in:
Bibliographic Details
Published inChemical research in toxicology Vol. 21; no. 3; pp. 696 - 704
Main Authors Touriño, Sonia, Lizárraga, Daneida, Carreras, Anna, Lorenzo, Sonia, Ugartondo, Vanessa, Mitjans, Montserrat, Vinardell, María Pilar, Juliá, Luis, Cascante, Marta, Torres, Josep Lluís
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.03.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Witch hazel (Hammamelis virginiana) bark is a rich source of both condensed and hydrolizable oligomeric tannins. From a polyphenolic extract soluble in both ethyl acetate and water, we have generated fractions rich in pyrogallol-containing polyphenols (proanthocyanidins, gallotannins, and gallates). The mixtures were highly active as free radical scavengers against ABTS, DPPH (hydrogen donation and electron transfer), and HNTTM (electron transfer). They were also able to reduce the newly introduced TNPTM radical, meaning that they included some highly reactive components. Witch hazel phenolics protected red blood cells from free radical-induced hemolysis and were mildly cytotoxic to 3T3 fibroblasts and HaCat keratinocytes. They also inhibited the proliferation of tumoral SK-Mel 28 melanoma cells at lower concentrations than grape and pine procyanidins. The high content in pyrogallol moieties may be behind the effect of witch hazel phenolics on skin cells. Because the most cytotoxic and antiproliferative mixtures were also the most efficient as electron transfer agents, we hypothesize that the final putative antioxidant effect of polyphenols may be in part attributed to the stimulation of defense systems by mild prooxidant challenges provided by reactive oxygen species generated through redox cycling.
Bibliography:RP-HPLC chromatograms obtained for all of the fractions before and after thioacidolysis and dose–response curves from the SK-Mel 28 proliferation assay. This material is available free of charge via the Internet at http://pubs.acs.org.
ark:/67375/TPS-760SCKCW-B
istex:D083BB74F0A1CD054582FE95E55417770A021D08
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-228X
1520-5010
DOI:10.1021/tx700425n