Mapping the topography and cone morphology of the Dalinor volcanic swarm in Inner Mongolia with remote sensing and DEM Data
The Dalinor volcanic swarm, located south of Xilinhot, Inner Mongolia of China, was a result of multistage eruptions that occurred since the Neogene period. This swarm is mainly composed of volcanic cones and lava tablelands. The objective of this study is to map the topography and morphology of thi...
Saved in:
Published in | Frontiers of earth science Vol. 10; no. 3; pp. 578 - 594 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.09.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The Dalinor volcanic swarm, located south of Xilinhot, Inner Mongolia of China, was a result of multistage eruptions that occurred since the Neogene period. This swarm is mainly composed of volcanic cones and lava tablelands. The objective of this study is to map the topography and morphology of this volcanic swarm. It is based on a variety of data collected from various sources, such as the digital elevation model (DEM), Landsat images, and a 1:50,000 topographic map, in addition to various software platforms, including ArcGIS, Envi4.8, Global Mapper, and Google Earth for data processing and interpretation. The results show that the overall topography of the volcanic swarm is a platform with a central swell having great undulation, sizable gradient variations, a rough surface, and small terrain relief. According to the undulating characteristics of the line profile, the volcanic swarm can be divided into four stairs with heights of 1,280 m, 1,360 m, 1,440 m, and 1,500 m. The analysis of the swath profile characterizes the two clusters of volcanoes with different height ranges and evolution. The lava tablelands and volcanic cones are distributed in nearly EW-trending belts, where tableland coverage was delineated with superposed layers of gradients and degrees of relief. According to the morphology, the volcanic cones were classified into four types: conical, composite, dome, and shield. The formation causes and classification basis for each type of volcanic cone were analyzed and their parameters were extracted. The HID ratios of all types of volcanic cones were then statistically determined and projected to create a map of volcanic density distribution. Based on the relationship between distribution and time sequence of the formation of different volcanic cones, itcan be inferred that the volcanic eruptions migrated from the margins to the center of the lava plateau. The central area was formed through superposition of multi-stage eruptive materials. In addition, a large number of early shield volcanoes were distributed on the margins. The morphological analysis of volcanic cones reveals the evolutionary stages of different types of cones. From the interpreted geomorphological indicators of faults, such as surface scarps, the pattern of volcanic cones, and the arrangement of crater major axes, it can be inferred that NE-trending and nearly EW-trending faults are present in this area, which are closely related to the formation and distribution of the volcanoes. |
---|---|
Bibliography: | 11-5982/P Dalinor volcanic swarm, volcanic geomor-phology, cone morphology, cone formation and evolution,fault The Dalinor volcanic swarm, located south of Xilinhot, Inner Mongolia of China, was a result of multistage eruptions that occurred since the Neogene period. This swarm is mainly composed of volcanic cones and lava tablelands. The objective of this study is to map the topography and morphology of this volcanic swarm. It is based on a variety of data collected from various sources, such as the digital elevation model (DEM), Landsat images, and a 1:50,000 topographic map, in addition to various software platforms, including ArcGIS, Envi4.8, Global Mapper, and Google Earth for data processing and interpretation. The results show that the overall topography of the volcanic swarm is a platform with a central swell having great undulation, sizable gradient variations, a rough surface, and small terrain relief. According to the undulating characteristics of the line profile, the volcanic swarm can be divided into four stairs with heights of 1,280 m, 1,360 m, 1,440 m, and 1,500 m. The analysis of the swath profile characterizes the two clusters of volcanoes with different height ranges and evolution. The lava tablelands and volcanic cones are distributed in nearly EW-trending belts, where tableland coverage was delineated with superposed layers of gradients and degrees of relief. According to the morphology, the volcanic cones were classified into four types: conical, composite, dome, and shield. The formation causes and classification basis for each type of volcanic cone were analyzed and their parameters were extracted. The HID ratios of all types of volcanic cones were then statistically determined and projected to create a map of volcanic density distribution. Based on the relationship between distribution and time sequence of the formation of different volcanic cones, itcan be inferred that the volcanic eruptions migrated from the margins to the center of the lava plateau. The central area was formed through superposition of multi-stage eruptive materials. In addition, a large number of early shield volcanoes were distributed on the margins. The morphological analysis of volcanic cones reveals the evolutionary stages of different types of cones. From the interpreted geomorphological indicators of faults, such as surface scarps, the pattern of volcanic cones, and the arrangement of crater major axes, it can be inferred that NE-trending and nearly EW-trending faults are present in this area, which are closely related to the formation and distribution of the volcanoes. cone formation and evolution Document received on :2015-01-10 Dalinor volcanic swarm fault Document accepted on :2015-05-27 volcanic geomorphology cone morphology ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2095-0195 2095-0209 |
DOI: | 10.1007/s11707-015-0536-1 |