Proximal Sensing and Digital Terrain Models Applied to Digital Soil Mapping and Modeling of Brazilian Latosols (Oxisols)

Digital terrain models (DTM) have been used in soil mapping worldwide. When using such models, improved predictions are often attained with the input of extra variables provided by the use of proximal sensors, such as magnetometers and portable X-ray fluorescence scanners (pXRF). This work aimed to...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 8; no. 8; p. 614
Main Authors Silva, Sérgio, Poggere, Giovana, Menezes, Michele, Carvalho, Geila, Guilherme, Luiz, Curi, Nilton
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Digital terrain models (DTM) have been used in soil mapping worldwide. When using such models, improved predictions are often attained with the input of extra variables provided by the use of proximal sensors, such as magnetometers and portable X-ray fluorescence scanners (pXRF). This work aimed to evaluate the efficiency of such tools for mapping soil classes and properties in tropical conditions. Soils were classified and sampled at 39 locations in a regular-grid design with a 200-m distance between samples. A pXRF and a magnetometer were used in all samples, and DTM values were obtained for every sampling site. Through visual analysis, boxplots were used to identify the best variables for distinguishing soil classes, which were further mapped using fuzzy logic. The map was then validated in the field. An ordinary least square regression model was used to predict sand and clay contents using DTM, pXRF and the magnetometer as predicting variables. Variables obtained with pXRF showed a greater ability for predicting soil classes (overall accuracy of 78% and 0.67 kappa index), as well as for estimating sand and clay contents than those acquired with DTM and the magnetometer. This study showed that pXRF offers additional variables that are key for mapping soils and predicting soil properties at a detailed scale. This would not be possible using only DTM or magnetic susceptibility.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs8080614