Kinetic Aspects of the Interaction between Ligand and G Protein-Coupled Receptor: The Case of the Adenosine Receptors

Ligand–receptor binding kinetics is an emerging topic in the drug research community. Over the past years, medicinal chemistry approaches from a kinetic perspective have been increasingly applied to G protein-coupled receptors including the adenosine receptors (AR), which are involved in a plethora...

Full description

Saved in:
Bibliographic Details
Published inChemical reviews Vol. 117; no. 1; pp. 38 - 66
Main Authors Guo, Dong, Heitman, Laura H, IJzerman, Adriaan P
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ligand–receptor binding kinetics is an emerging topic in the drug research community. Over the past years, medicinal chemistry approaches from a kinetic perspective have been increasingly applied to G protein-coupled receptors including the adenosine receptors (AR), which are involved in a plethora of physiological and pathological conditions. The study of ligand–AR binding kinetics offers room for detailed structure–kinetics relationships next to more traditional structure–activity relationships. Their combination may facilitate the triage of candidate compounds in hit-to-lead campaigns. Furthermore, kinetic studies also help in understanding AR allosterism. Allosteric modulation may yield a change in the activity and conformation of a receptor resulting from the binding of a compound at a site distinct from where the endogenous agonist adenosine binds. Hence, in this Review, we summarize available data and evidence for the binding kinetics of orthosteric and allosteric AR ligands. We hope this Review will raise awareness to consider the kinetic aspects of drug–target interactions on both ARs and other drug targets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0009-2665
1520-6890
DOI:10.1021/acs.chemrev.6b00025