Single-Walled Carbon Nanotube Film as Electrode in Indium-Free Planar Heterojunction Perovskite Solar Cells: Investigation of Electron-Blocking Layers and Dopants

In this work, we fabricated indium-free perovskite solar cells (SCs) using direct- and dry-transferred aerosol single-walled carbon nanotubes (SWNTs). We investigated diverse methodologies to solve SWNTs’ hydrophobicity and doping issues in SC devices. These include changing wettability of poly­(3,4...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 15; no. 10; pp. 6665 - 6671
Main Authors Jeon, Il, Chiba, Takaaki, Delacou, Clement, Guo, Yunlong, Kaskela, Antti, Reynaud, Olivier, Kauppinen, Esko I, Maruyama, Shigeo, Matsuo, Yutaka
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, we fabricated indium-free perovskite solar cells (SCs) using direct- and dry-transferred aerosol single-walled carbon nanotubes (SWNTs). We investigated diverse methodologies to solve SWNTs’ hydrophobicity and doping issues in SC devices. These include changing wettability of poly­(3,4-ethylenedioxythiophene)/poly­(styrenesulfonate) (PEDOT:PSS), MoO3 thermal doping, and HNO3(aq) doping with various dilutions from 15 to 70 v/v% to minimize its instability and toxic nature. We discovered that isopropanol (IPA) modified PEDOT:PSS works better than surfactant modified PEDOT:PSS as an electron-blocking layer on SWNTs in perovskite SCs due to superior wettability, whereas MoO3 is not compatible owing to energy level mismatching. Diluted HNO3 (35 v/v%)-doped SWNT-based device produced the highest PCE of 6.32% among SWNT-based perovskite SCs, which is 70% of an indium tin oxide (ITO)-based device (9.05%). Its flexible application showed a PCE of 5.38% on polyethylene terephthalate (PET) substrate.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.5b02490