Sluggish Electron Transfer of Oxygen-Terminated Moderately Boron-Doped Diamond Electrode Induced by Large Interfacial Capacitance between a Diamond and Silicon Interface
Boron-doped diamond (BDD) has tremendous potential for use as an electrode material with outstanding characteristics. The substrate material of BDD can affect the electrochemical properties of BDD electrodes due to the different junction structures of BDD and the substrate materials. However, the BD...
Saved in:
Published in | JACS Au Vol. 4; no. 3; pp. 1184 - 1193 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Boron-doped diamond (BDD) has tremendous potential for use as an electrode material with outstanding characteristics. The substrate material of BDD can affect the electrochemical properties of BDD electrodes due to the different junction structures of BDD and the substrate materials. However, the BDD/substrate interfacial properties have not been clarified. In this study, the electrochemical behavior of BDD electrodes with different boron-doping levels (0.1% and 1.0% B/C ratios) synthesized on Si, W, Nb, and Mo substrates was investigated. Potential band diagrams of the BDD/substrate interface were proposed to explain different junction structures and electrochemical behaviors. Oxygen-terminated BDD with moderate boron-doping levels exhibited sluggish electron transfer induced by the large capacitance generated at the BDD/Si interface. These findings provide a fundamental understanding of diamond electrochemistry and insight into the selection of suitable substrate materials for practical applications of BDD electrodes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2691-3704 2691-3704 |
DOI: | 10.1021/jacsau.4c00006 |