Bacterial Biofilm Thickness and Fungal Inhibitory Bacterial Richness Both Prevent Establishment of the Amphibian Fungal Pathogen Batrachochytrium dendrobatidis

Host-associated microbial biofilms can provide protection against pathogen establishment. In many host-microbe symbioses (including, but not limited to humans, plants, insects, and amphibians), there is a correlation between host-associated microbial diversity and pathogen infection risk. Diversity...

Full description

Saved in:
Bibliographic Details
Published inApplied and environmental microbiology Vol. 88; no. 5; p. e0160421
Main Authors Chen, Melissa Y, Alexiev, Alexandra, McKenzie, Valerie J
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 08.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Host-associated microbial biofilms can provide protection against pathogen establishment. In many host-microbe symbioses (including, but not limited to humans, plants, insects, and amphibians), there is a correlation between host-associated microbial diversity and pathogen infection risk. Diversity may prevent infection by pathogens through sampling effects and niche complementarity, but an alternative hypothesis may be that microbial biomass is confounded with diversity and that host-associated biofilms are deterring pathogen establishment through space preemption. In this study, we use the amphibian system as a model for host-microbe-pathogen interactions to ask two questions: (i) is bacterial richness confounded with biofilm thickness or cell density, and (ii) to what extent do biofilm thickness, cell density, and bacterial richness each deter the establishment of the amphibian fungal pathogen Batrachochytrium dendrobatidis? To answer these questions, we built a custom biofilm microcosm that mimics the host-environment interface by allowing nutrients to diffuse out of a fine-pore biofilm scaffolding. This created a competitive environment in which bacteria and the fungal pathogen compete for colonization space. We then challenged bacterial biofilms ranging in community richness, biofilm thickness, bacterial cell density, and B. dendrobatidis (also known as )-inhibitory metabolite production with live B. dendrobatidis zoospores to determine how B. dendrobatidis establishment success on membranes varies. We found that biofilm thickness and B. dendrobatidis-inhibitory isolate richness work in complement to reduce B. dendrobatidis establishment success. This work underscores that physical aspects of biofilm communities can play a large role in pathogen inhibition, and in many studies, these traits are not studied. Our finding highlights the fact that diversity, as measured through 16S rRNA gene sequencing, may obscure the true mechanisms behind microbe-mediated pathogen defense and that physical space occupation by biofilm-forming symbionts may significantly contribute to pathogen protection. These findings have implications across a wide range of host-microbe systems since 16S rRNA gene sequencing is a standard tool used across many microbial systems. Further, our results are potentially relevant to many host-pathogen systems since host-associated bacterial biofilms are ubiquitous.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
ISSN:0099-2240
1098-5336
DOI:10.1128/aem.01604-21