High Current Density Esaki Tunnel Diodes Based on GaSb-InAsSb Heterostructure Nanowires
We present electrical characterization of broken gap GaSb-InAsSb nanowire heterojunctions. Esaki diode characteristics with maximum reverse current of 1750 kA/cm2 at 0.50 V, maximum peak current of 67 kA/cm2 at 0.11 V, and peak-to-valley ratio (PVR) of 2.1 are obtained at room temperature. The rever...
Saved in:
Published in | Nano letters Vol. 11; no. 10; pp. 4222 - 4226 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
12.10.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present electrical characterization of broken gap GaSb-InAsSb nanowire heterojunctions. Esaki diode characteristics with maximum reverse current of 1750 kA/cm2 at 0.50 V, maximum peak current of 67 kA/cm2 at 0.11 V, and peak-to-valley ratio (PVR) of 2.1 are obtained at room temperature. The reverse current density is comparable to that of state-of-the-art tunnel diodes based on heavily doped p-n junctions. However, the GaSb-InAsSb diodes investigated in this work do not rely on heavy doping, which permits studies of transport mechanisms in simple transistor structures processed with high-κ gate dielectrics and top-gates. Such processing results in devices with improved PVR (3.5) and stability of the electrical properties. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1530-6984 1530-6992 1530-6992 |
DOI: | 10.1021/nl202180b |