Ab Initio Nonadiabatic Quantum Molecular Dynamics

The Born–Oppenheimer approximation underlies much of chemical simulation and provides the framework defining the potential energy surfaces that are used for much of our pictorial understanding of chemical phenomena. However, this approximation breaks down when the dynamics of molecules in excited el...

Full description

Saved in:
Bibliographic Details
Published inChemical reviews Vol. 118; no. 7; pp. 3305 - 3336
Main Authors Curchod, Basile F. E, Martínez, Todd J
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Born–Oppenheimer approximation underlies much of chemical simulation and provides the framework defining the potential energy surfaces that are used for much of our pictorial understanding of chemical phenomena. However, this approximation breaks down when the dynamics of molecules in excited electronic states are considered. Describing dynamics when the Born–Oppenheimer approximation breaks down requires a quantum mechanical description of the nuclei. Chemical reaction dynamics on excited electronic states is critical for many applications in renewable energy, chemical synthesis, and bioimaging. Furthermore, it is necessary in order to connect with many ultrafast pump–probe spectroscopic experiments. In this review, we provide an overview of methods that can describe nonadiabatic dynamics, with emphasis on those that are able to simultaneously address the quantum mechanics of both electrons and nuclei. Such ab initio quantum molecular dynamics methods solve the electronic Schrödinger equation alongside the nuclear dynamics and thereby avoid the need for precalculation of potential energy surfaces and nonadiabatic coupling matrix elements. Two main families of methods are commonly employed to simulate nonadiabatic dynamics in molecules: full quantum dynamics, such as the multiconfigurational time-dependent Hartree method, and classical trajectory-based approaches, such as trajectory surface hopping. In this review, we describe a third class of methods that is intermediate between the two: Gaussian basis set expansions built around trajectories.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
701355; AC02-76SF00515
ISSN:0009-2665
1520-6890
DOI:10.1021/acs.chemrev.7b00423