Control of Cytochrome c Redox Potential:  Axial Ligation and Protein Environment Effects

Axial iron ligation and protein encapsulation of the heme cofactor have been investigated as effectors of the reduction potential (E°‘) of cytochrome c through direct electrochemistry experiments. Our approach was that of partitioning the E°‘ changes resulting from binding of imidazole, 2-methyl-imi...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 124; no. 19; pp. 5315 - 5324
Main Authors Battistuzzi, Gianantonio, Borsari, Marco, Cowan, James A., Ranieri, Antonio, Sola, Marco
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 15.05.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Axial iron ligation and protein encapsulation of the heme cofactor have been investigated as effectors of the reduction potential (E°‘) of cytochrome c through direct electrochemistry experiments. Our approach was that of partitioning the E°‘ changes resulting from binding of imidazole, 2-methyl-imidazole, ammonia, and azide to both cytochrome c and microperoxidase-11 (MP11), into the enthalpic and entropic contributions. N-Acetylmethionine binding to MP11 was also investigated. These ligands replace Met80 and a water molecule axially coordinated to the heme iron in cytochrome c and MP11, respectively. This factorization was achieved through variable temperature E°‘ measurements. In this way, we have found that (i) the decrease in E°‘ of cytochrome c due to Met80 substitution by a nitrogen-donor ligand is almost totally enthalpic in origin, as a result of the stronger electron donor properties of the exogenous ligand which selectively stabilize the ferric state; (ii) on the contrary, the binding of the same ligands and N-acetylmethionine to MP11 results in an enthalpic stabilization of the reduced state, whereas the entropic effect invariably decreases E°‘ (the former effect prevails for the methionine ligand and the latter for the nitrogenous ligands). A comparison of the reduction thermodynamics of cytochrome c and the MP11 adducts offers insight on the effect of changing axial heme ligation and heme insertion into the folded polypeptide chain. Principally, we have found that the overall E°‘ increase of approximately 400 mV, comparing MP11 and native cytochrome c, consists of two opposite enthalpic and entropic terms of approximately +680 and −280 mV, respectively. The enthalpic term includes contributions from both axial methionine binding (+300 mV) and protein encapsulation of the heme (+380 mV), whereas the entropic term is almost entirely manifest at the stage of axial ligand binding. Both terms are dominated by the effects of water exclusion from the heme environment.
Bibliography:istex:3C6F946D979C69ACD9FFE315252EF54D24F35225
ark:/67375/TPS-GW48F6PT-5
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/ja017479v