Validation of the TOLNet lidars: the Southern California Ozone Observation Project (SCOOP)
The North America-based Tropospheric Ozone Lidar Network (TOLNet) was recently established to provide high spatiotemporal vertical profiles of ozone, to better understand physical processes driving tropospheric ozone variability and to validate the tropospheric ozone measurements of upcoming spacebo...
Saved in:
Published in | Atmospheric measurement techniques Vol. 11; no. 11; pp. 6137 - 6162 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article Publication |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
12.11.2018
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The North America-based Tropospheric Ozone Lidar Network (TOLNet)
was recently established to provide high spatiotemporal vertical profiles of
ozone, to better understand physical processes driving tropospheric ozone
variability and to validate the tropospheric ozone measurements of upcoming
spaceborne missions such as Tropospheric Emissions: Monitoring Pollution
(TEMPO). The network currently comprises six tropospheric ozone lidars, four
of which are mobile instruments deploying to the field a few times per year,
based on campaign and science needs. In August 2016, all four mobile TOLNet
lidars were brought to the fixed TOLNet site of JPL Table Mountain Facility
for the 1-week-long Southern California Ozone Observation Project (SCOOP).
This intercomparison campaign, which included 400 h of lidar measurements
and 18 ozonesonde launches, allowed for the unprecedented simultaneous
validation of five of the six TOLNet lidars. For measurements between 3 and
10 km a.s.l., a mean difference of 0.7 ppbv (1.7 %), with a
root-mean-square deviation of 1.6 ppbv or 2.4 %, was found between the
lidars and ozonesondes, which is well within the combined uncertainties of
the two measurement techniques. The few minor differences identified were
typically associated with the known limitations of the lidars at the profile
altitude extremes (i.e., first 1 km above ground and at the instruments'
highest retrievable altitude). As part of a large homogenization and quality
control effort within the network, many aspects of the TOLNet in-house data
processing algorithms were also standardized and validated. This thorough
validation of both the measurements and retrievals builds confidence as to the
high quality and reliability of the TOLNet ozone lidar profiles for many
years to come, making TOLNet a valuable ground-based reference network for
tropospheric ozone profiling. |
---|---|
ISSN: | 1867-8548 1867-1381 1867-8548 |
DOI: | 10.5194/amt-11-6137-2018 |