In Vitro Bioaccessibility of β-Carotene from Heat-Processed Orange-Fleshed Sweet Potato

Orange-fleshed sweet potato (OFSP) is currently promoted in parts of sub-Saharan Africa as a biofortified staple food with large potential to provide considerable amounts of provitamin A carotenoids. However, the bioaccessibility of provitamin A carotenoids from OFSP has not been widely investigated...

Full description

Saved in:
Bibliographic Details
Published inJournal of agricultural and food chemistry Vol. 57; no. 20; pp. 9693 - 9698
Main Authors Bengtsson, Anton, Larsson Alminger, Marie, Svanberg, Ulf
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 28.10.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Orange-fleshed sweet potato (OFSP) is currently promoted in parts of sub-Saharan Africa as a biofortified staple food with large potential to provide considerable amounts of provitamin A carotenoids. However, the bioaccessibility of provitamin A carotenoids from OFSP has not been widely investigated, especially not as an effect of different preparation methods. In this study, we used an in vitro digestion model to assess the bioaccessibility of β-carotene from differently heat-processed OFSP. The fraction of carotenoids transferred from the food matrix to a micellar phase obtained after microfiltration and to a supernatant obtained after low-speed centrifugation was investigated. The percentage of accessible all-trans-β-carotene in the micellar phase varied between 0.5 and 1.1% in the heat-processed OFSP without fat and between 11 and 22% with the addition of 2.5% (w/w) cooking oil. In comparison with the micellar phase, the percentage of accessible all-trans-β-carotene in the supernatant phase was significantly higher (P < 0.001), between 24 and 41% without fat and between 28 and 46% with fat. These results support the importance of fat for an improved micellarization of β-carotene. Overall, the high in vitro bioaccessibility of β-carotene from heat-processed OFSP indicates that sweet potato might be a promising dietary approach to combat vitamin A deficiency.
Bibliography:http://dx.doi.org/10.1021/jf901692r
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-8561
1520-5118
1520-5118
DOI:10.1021/jf901692r