Surface Molecular Imprinting in Layer-by-Layer films on Silica Particles
An improvement to molecular imprinting in polymers, where bulk systems often suffer from slow dynamics of release and uptake, is the formation of thin films with imprinting sites that are more rapid to access by guest molecules. Based on our previous development of surface molecular imprinting layer...
Saved in:
Published in | Langmuir Vol. 28; no. 9; pp. 4267 - 4273 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
06.03.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An improvement to molecular imprinting in polymers, where bulk systems often suffer from slow dynamics of release and uptake, is the formation of thin films with imprinting sites that are more rapid to access by guest molecules. Based on our previous development of surface molecular imprinting layer-by-layer (LbL) films (SMILbL), the present paper presents selective imprinted sites in a surface film on dispersed silica particles, thus designing a SMILbL system with maximized active area and in addition allowing studies with bulk techniques. The multilayer is designed to include the template during the LbL buildup and to form a cross-linked network upon UV-irradiation for enhanced stability. A theophylline moiety is grafted to poly(acrylic acid) as the template, while a UV-sensitive diazo polycation cross-links the polymers after irradiation. Electrophoretic measurements prove the successful buildup of the multilayers by an alternating sign of the zeta potential. Template release is achieved by cleavage of the grafted template. The released amount of template is quantified in solution by 1H NMR spectra and is in good agreement with the prediction from surface coverage calculations. Rebinding studies of template to the now empty imprinted binding sites show a high affinity for a theophylline derivative with a rebound amount on the order of the original template content. In contrast to theophylline, caffeine with a very similar chemical structureonly differing in one functional groupshows very different binding properties due to a thiol moiety in the binding site. Thus, a particle system with very selective molecular imprinting sites is demonstrated. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la205027j |