Stochastic Learning and Optimization A Sensitivity-Based Approach
"Performance optimization is vital in the design and operation of modern engineering systems, including communications, manufacturing, robotics, and logistics. Most engineering systems are too complicated to model, or the system parameters cannot be easily identified, so learning techniques hav...
Saved in:
Main Author | |
---|---|
Format | eBook Book |
Language | English |
Published |
New York
Springer-Verlag
2007
Springer Springer US |
Edition | 1. Aufl. |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | "Performance optimization is vital in the design and operation of modern engineering systems, including communications, manufacturing, robotics, and logistics. Most engineering systems are too complicated to model, or the system parameters cannot be easily identified, so learning techniques have to be applied. This is a multi-disciplinary area which has been attracting wide attention across many disciplines. Areas such as perturbation analysis (PA) in discrete event dynamic systems (DEDSs), Markov decision processes (MDPs) in operations research, reinforcement learning (RL) or neuro-dynamic programming (NDP) in computer science, identification and adaptive control (IAC) in control systems, share the common goal: to make the ""best decision"" to optimize system performance. This book provides a unified framework based on a sensitivity point of view. It also introduces new approaches and proposes new research topics within this sensitivity-based framework." |
---|---|
Bibliography: | With 119 figures, 27 tables, and 212 problems Includes bibliographical references and index |
ISBN: | 038736787X 9780387367873 |
DOI: | 10.1007/978-0-387-69082-7 |