Species-Based Differences in Mechanical Properties, Cytocompatibility, and Printability of Methacrylated Collagen Hydrogels

Collagen methacrylation is a promising approach to generate photo-cross-linkable cell-laden hydrogels with improved mechanical properties. However, the impact of species-based variations in amino acid composition and collagen isolation method on methacrylation degree (MD) and its subsequent effects...

Full description

Saved in:
Bibliographic Details
Published inBiomacromolecules Vol. 23; no. 12; pp. 5137 - 5147
Main Authors Ali, Sarah M., Patrawalla, Nashaita Y., Kajave, Nilabh S., Brown, Alan B., Kishore, Vipuil
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 12.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Collagen methacrylation is a promising approach to generate photo-cross-linkable cell-laden hydrogels with improved mechanical properties. However, the impact of species-based variations in amino acid composition and collagen isolation method on methacrylation degree (MD) and its subsequent effects on the physical properties of methacrylated collagen (CMA) hydrogels and cell response are unknown. Herein, we compared the effects of three collagen species (bovine, human, and rat), two collagen extraction methods (pepsin digestion and acid extraction), and two photoinitiators (lithium phenyl-2,4,6-trimethyl­benzoyl­phosphinate (LAP) and Irgacure-2959 (I-2959)) on the physical properties of CMA hydrogels, printability and mesenchymal stem cell (MSC) response. Human collagen showed the highest MD. LAP was more cytocompatible than I-2959. The compressive modulus and cell viability of rat CMA were significantly higher (p < 0.05) than bovine CMA. Human CMA yielded constructs with superior print fidelity. Together, these results suggest that careful selection of collagen source and cross-linking conditions is essential for biomimetic design of CMA hydrogels for tissue engineering applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1525-7797
1526-4602
DOI:10.1021/acs.biomac.2c00985