Plant Metabolomics: Maximizing Metabolome Coverage by Optimizing Mobile Phase Additives for Nontargeted Mass Spectrometry in Positive and Negative Electrospray Ionization Mode

Nontargeted screening methods with ultrahigh-performance liquid chromatography-electrospray ionization/quadrupole-time-of-flight mass spectrometry have been extensively applied to plant metabolomics to very diverse scientific issues in plant metabolomics. In this study, different mobile phase additi...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 89; no. 19; pp. 10474 - 10486
Main Authors Creydt, Marina, Fischer, Markus
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nontargeted screening methods with ultrahigh-performance liquid chromatography-electrospray ionization/quadrupole-time-of-flight mass spectrometry have been extensively applied to plant metabolomics to very diverse scientific issues in plant metabolomics. In this study, different mobile phase additives were tested in order to improve the electrospray ionization process and to detect as many metabolites as possible with high peak intensities in positive and negative ionization mode. Influences of modifiers were examined for nonpolar and polar compounds, as optimal conditions are not always the same. By combining different additives, metabolite coverage could be significantly increased. The best results for polar metabolites in positive ionization mode were achieved by using 0.1% acetic acid and 0.1% formic acid in negative ionization mode. For measurements of nonpolar metabolites in positive ionization mode, the application of 10 mmol/L ammonium formate led to the best findings, while the use of 0.02% acetic acid was more appropriate in negative ionization mode.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.7b02592