Choline-Functionalized Supramolecular Copolymers: Toward Antimicrobial Activity against Streptococcus pneumoniae
Dynamic binding events are key to arrive at functionality in nature, and these events are often governed by electrostatic or hydrophobic interactions. Synthetic supramolecular polymers are promising candidates to obtain biomaterials that mimic this dynamicity. Here, we created four new functional mo...
Saved in:
Published in | Biomacromolecules Vol. 22; no. 12; pp. 5363 - 5373 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Dynamic binding events are key to arrive at functionality in nature, and these events are often governed by electrostatic or hydrophobic interactions. Synthetic supramolecular polymers are promising candidates to obtain biomaterials that mimic this dynamicity. Here, we created four new functional monomers based on the benzene-1,3,5-tricarboxamide (BTA) motif. Choline or atropine groups were introduced to obtain functional monomers capable of competing with the cell wall of Streptococcus pneumoniae for binding of essential choline-binding proteins (CBPs). Atropine-functionalized monomers BTA-Atr and BTA-Atr 3 were too hydrophobic to form homogeneous assemblies, while choline-functionalized monomers BTA-Chol and BTA-Chol 3 were unable to form fibers due to charge repulsion. However, copolymerization of BTA-Chol 3 with non-functionalized BTA-(OH) 3 yielded dynamic fibers, similar to BTA-(OH) 3 . These copolymers showed an increased affinity toward CBPs compared to free choline due to multivalent effects. BTA-based supramolecular copolymers are therefore a versatile platform to design bioactive and dynamic supramolecular polymers with novel biotechnological properties. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/acs.biomac.1c01293 |