Spin-Dependent Photovoltaic and Photogalvanic Responses of Optoelectronic Devices Based on Chiral Two-Dimensional Hybrid Organic–Inorganic Perovskites

Two-dimensional hybrid organic–inorganic perovskites (2D-HOIPs) that form natural multiple quantum wells have attracted increased research interest due to their interesting physics and potential applications in optoelectronic devices. Recent studies have shown that spintronics applications can also...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 15; no. 1; pp. 588 - 595
Main Authors Wang, Jingying, Lu, Haipeng, Pan, Xin, Xu, Junwei, Liu, Haoliang, Liu, Xiaojie, Khanal, Dipak R, Toney, Michael F, Beard, Matthew C, Vardeny, Z. Valy
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two-dimensional hybrid organic–inorganic perovskites (2D-HOIPs) that form natural multiple quantum wells have attracted increased research interest due to their interesting physics and potential applications in optoelectronic devices. Recent studies have shown that spintronics applications can also be introduced to 2D-HOIPs upon integrating chiral organic ligands into the organic layers. Here we report spin-dependent photovoltaic and photogalvanic responses of optoelectronic devices based on chiral 2D-HOIPs, namely, (R-MBA)2PbI4 and (S-MBA)2PbI4. The out-of-plane photocurrent response in vertical photovoltaic devices exhibits ∼10% difference upon right and left circularly polarized light (CPL) excitation, which originates from selective spin transport through the chiral multilayers. In contrast, the in-plane photocurrent response generated by CPL excitation of planar photoconductive devices shows a typical response of chirality-induced circular photogalvanic effect that originates from the Rashba splitting in the electronic bands of these compounds. Our studies may lead to potential applications of chiral 2D-HOIPs in optoelectronic devices that are sensitive to the light helicity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.0c05980