Composition-Explicit Distillation Curves of Diesel Fuel with Glycol Ether and Glycol Ester Oxygenates: Fuel Analysis Metrology to Enable Decreased Particulate Emissions

We recently introduced several important improvements in the measurement of distillation curves of complex fluids. The modifications to the classical measurement provide for (1) a composition-explicit data channel for each distillate fraction (for both qualitative and quantitative analysis), (2) tem...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 42; no. 20; pp. 7682 - 7689
Main Authors Smith, Beverly L, Ott, Lisa S, Bruno, Thomas J
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 15.10.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We recently introduced several important improvements in the measurement of distillation curves of complex fluids. The modifications to the classical measurement provide for (1) a composition-explicit data channel for each distillate fraction (for both qualitative and quantitative analysis), (2) temperature measurements that are true thermodynamic state points that can be modeled with an equation of state, (3) temperature, volume, and pressure measurements of low uncertainty suitable for equation of state development, (4) consistency with a century of historical data, (5) an assessment of the energy content of each distillate fraction, (6) trace chemical analysis of each distillate fraction, and (7) corrosivity assessment of each distillate fraction. We have applied the new method to the measurement of rocket propellant, gasolines, jet fuels, and hydrocarbon crude oils. In this paper we present the application of the technique to representative diesel fuel and mixtures of diesel fuel with some of the more promising oxygenating agents; namely, the glycol ethers and glycol esters: tri(propylene glycol) methyl ether (TPM), dibutyl maleate (DBM), and an 80/20 (vol/vol) mixture of diethylene glycol methyl ether (DGME) + 1,2-dimethoxyethane (DME) a mixture often referred to as Cetaner. We present not only the distillation curves but also a chemical characterization of each fraction, and discuss the contrasts between the various mixtures. The measurements are significant as an environmental design tool for decreased particulate emissions.
Bibliography:istex:A42A61EA90886D394533FE41EA4B92874539AD19
ark:/67375/TPS-HXCSL6XL-P
Additional experimental data. This information is available free of charge via the Internet at http://pubs.acs.org.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-936X
1520-5851
DOI:10.1021/es800067c