Does the invasive plant, Impatiens glandulifera, promote soil erosion along the riparian zone? An investigation on a small watercourse in northwest Switzerland
PURPOSE: The invasive plant, Impatiens glandulifera (common English name: Himalayan Balsam), is now found in many river catchments in most European countries. Its preference for damp, nutrient-rich soils, along with its intolerance to cold weather and rapid dieback, has implicated it in promoting so...
Saved in:
Published in | Journal of soils and sediments Vol. 14; no. 3; pp. 637 - 650 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.03.2014
Springer Berlin Heidelberg Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | PURPOSE: The invasive plant, Impatiens glandulifera (common English name: Himalayan Balsam), is now found in many river catchments in most European countries. Its preference for damp, nutrient-rich soils, along with its intolerance to cold weather and rapid dieback, has implicated it in promoting soil erosion along the riparian zone. Despite the implication, its influence on the sediment dynamics of river systems remains unconfirmed. This communication reports the preliminary findings of ongoing work to investigate a possible link between I. glandulifera and accelerated erosion rates in inland river systems. MATERIALS AND METHODS: Erosion pins, a micro-profile bridge, and a digital caliper were employed to measure changes in the soil surface profile (SSP) at six separate locations, each contaminated with I. glandulifera, along the riparian zone of a small watercourse in northwest Switzerland. Changes in SSP were also measured at an identical number of nearby locations supporting natural vegetation, in order to establish baseline erosion conditions. Soil surface profiles at all 12 locations were re-measured on seven separate occasions, from October 2012 to May 2013. This covers the time before dieback occurred to the germination and seasonal regrowth of new plants. RESULTS AND DISCUSSION: A total of 720 individual SSP measurements were recorded during the above monitoring period. Increasingly negative values relative to initial values were documented at most transects, indicating a net reduction in soil surface elevations. This is interpreted as evidence of the removal (i.e., erosion) of surface material. Paired samples statistical analysis of the data indicate that erosion from contaminated sites was significantly greater than erosion from topographically comparable reference sites (t =−5.758; P < 0.05; N = 359) supporting natural vegetation. CONCLUSIONS: The results provide tentative yet compelling evidence that I. glandulifera promotes soil erosion along the riparian zone of the watercourse investigated. Given the unrelenting spread of this notoriously invasive plant throughout inland river systems in many countries, the likelihood of greater quantities of nutrient-rich sediment entering into aquatic environments may steadily reduce water quality in all affected catchments. An absence of effective control measures capable of halting or even slowing its rate of invasion may make it increasingly difficult for affected European Union member states to meet and then maintain key water quality standards set by the Water Framework Directive (WFD) when fully implemented in 2015. |
---|---|
Bibliography: | http://dx.doi.org/10.1007/s11368-013-0825-9 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1439-0108 1614-7480 |
DOI: | 10.1007/s11368-013-0825-9 |