Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities

Noble metal nanoparticles have been extensively studied to understand and apply their plasmonic responses, upon coupling with electromagnetic radiation, to research areas such as sensing, photocatalysis, electronics, and biomedicine. The plasmonic properties of metal nanoparticles can change signifi...

Full description

Saved in:
Bibliographic Details
Published inChemical reviews Vol. 119; no. 1; pp. 664 - 699
Main Authors Kang, Hyunho, Buchman, Joseph T, Rodriguez, Rebeca S, Ring, Hattie L, He, Jiayi, Bantz, Kyle C, Haynes, Christy L
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 09.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Noble metal nanoparticles have been extensively studied to understand and apply their plasmonic responses, upon coupling with electromagnetic radiation, to research areas such as sensing, photocatalysis, electronics, and biomedicine. The plasmonic properties of metal nanoparticles can change significantly with changes in particle size, shape, composition, and arrangement. Thus, stabilization of the fabricated nanoparticles is crucial for preservation of the desired plasmonic behavior. Because plasmonic nanoparticles find application in diverse fields, a variety of different stabilization strategies have been developed. Often, stabilizers also function to enhance or improve the plasmonic properties of the nanoparticles. This review provides a representative overview of how gold and silver nanoparticles, the most frequently used materials in current plasmonic applications, are stabilized in different application platforms and how the stabilizing agents improve their plasmonic properties at the same time. Specifically, this review focuses on the roles and effects of stabilizing agents such as surfactants, silica, biomolecules, polymers, and metal shells in colloidal nanoparticle suspensions. Stability strategies for other types of plasmonic nanomaterials, lithographic plasmonic nanoparticle arrays, are discussed as well.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-2
ISSN:0009-2665
1520-6890
DOI:10.1021/acs.chemrev.8b00341