Assessing the Extent of Bone Degradation Using Glutamine Deamidation in Collagen

Collagen peptides are analyzed using a low-cost, high-throughput method for assessing deamidation using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). For each chosen peptide, the theoretical distribution is calculated and the measured distribution for each sample compared...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 84; no. 21; pp. 9041 - 9048
Main Authors Wilson, Julie, van Doorn, Nienke L, Collins, Matthew J
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 06.11.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Collagen peptides are analyzed using a low-cost, high-throughput method for assessing deamidation using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). For each chosen peptide, the theoretical distribution is calculated and the measured distribution for each sample compared with this to determine the extent of glutamine deamidation. The deamidation of glutamine (Q) to glutamic acid (E) results in a mass shift of +0.984 Da. Thus, from the resolution of our data, the second peak in the isotope distribution for a peptide containing one glutamine residue coincides with the first peak of the isotope distribution for the peptide in which the residue is deamidated. A genetic algorithm is used to determine the extent of deamidation that gives the best fit to the measured distribution. The method can be extended to peptides containing more than one glutamine residue. The extent of protein degradation assessed in this way could be used, for example, to assess the damage of collagen, and screen samples for radiocarbon dating and DNA analysis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2700
1520-6882
DOI:10.1021/ac301333t