Cell Surface Self-Assembly of Hybrid Nanoconjugates via Oligonucleotide Hybridization Induces Apoptosis
Hybrid nanomaterials composed of synthetic and biological building blocks possess high potential for the design of nanomedicines. The use of self-assembling nanomaterials as “bio-mimics” may trigger cellular events and result in new therapeutic effects. Motivated by this rationale, we designed a the...
Saved in:
Published in | ACS nano Vol. 8; no. 1; pp. 719 - 730 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
28.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hybrid nanomaterials composed of synthetic and biological building blocks possess high potential for the design of nanomedicines. The use of self-assembling nanomaterials as “bio-mimics” may trigger cellular events and result in new therapeutic effects. Motivated by this rationale, we designed a therapeutic platform that mimics the mechanism of immune effector cells to cross-link surface receptors of target cells and induce apoptosis. This platform was tested against B-cell lymphomas that highly express the surface antigen CD20. Here, two nanoconjugates were synthesized: (1) an anti-CD20 Fab′ fragment covalently linked to a single-stranded morpholino oligonucleotide (MORF1), and (2) a linear polymer of N-(2-hydroxypropyl)methacrylamide (HPMA) grafted with multiple copies of the complementary oligonucleotide MORF2. We show that the two conjugates self-assemble via MORF1-MORF2 hybridization at the surface of CD20+ malignant B-cells, which cross-links CD20 antigens and initiates apoptosis. When tested in a murine model of human non-Hodgkin’s lymphoma, the two conjugates, either administered consecutively or as a premixture, eradicated cancer cells and produced long-term survivors. The designed therapeutics contains no small-molecule cytotoxic compounds and is immune-independent, aiming to improve over chemotherapy, radiotherapy and immunotherapy. This therapeutic platform can be applied to cross-link any noninternalizing receptor and potentially treat other diseases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/nn4053827 |