Predicting solute transport in soils: second-order two-site models

Failure of numerous efforts to describe the movement of reactive solutes in soils is often due to inaccurate identification of solute-soil interactions or to the lack of independently derived model parameters. The main objective of this work was to test the applicability of chemical vs. physical non...

Full description

Saved in:
Bibliographic Details
Published inSoil Science Society of America journal Vol. 63; no. 4; pp. 768 - 777
Main Authors Selim, H.M, Ma, L, Zhu, H
Format Journal Article
LanguageEnglish
Published Madison Soil Science Society 01.07.1999
Soil Science Society of America
American Society of Agronomy
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Failure of numerous efforts to describe the movement of reactive solutes in soils is often due to inaccurate identification of solute-soil interactions or to the lack of independently derived model parameters. The main objective of this work was to test the applicability of chemical vs. physical nonequilibrium approaches in describing the transport of solutes in soils. The models evaluated are based on second-order two-site approaches (SOTS) with and without consideration of physical nonequilibrium in soils. The capability of these approaches for predicting the transport of metolachlor [2-Chloro-N-(2-ethyl-6-methylphenyl)-N- (2-methoxy-1-methylethyl)acetamide] in Sharkey clay (very-fine, smectitic, thermic Chromic Epiaquerts) soil columns of different aggregate sizes (< 2, 2-4, and 4-6 mm) was examined. Moreover, two sets of model parameters were independently derived from the kinetic retention experiments. The first set was based on kinetic adsorption isotherms, and the second set utilized both adsorption and desorption kinetic retention (batch) results. Judging from data on the total root mean square error, parameters based on adsorption and desorption batch results provided breakthrough curve (BTC) predictions that are improved over those of parameters from absorption kinetics only. The coupled physical and chemical nonequilibrium model (SOTS plus mobile-immobile [MIM]: SOTS-MIM) considerably improved BTC predictions for the 2- to 4- and 4- to 6-mm soil aggregate sizes. We conclude that the modified SOTS and SOTS-MIM methods provided an improved description of metolachlor transport in the Sharkey soil. Based on total root mean square errors, the modified SOTS-MIM with parameters derived from adsorption and desorption kinetic retention experiments provided best overall BTC predictions.
Bibliography:Published as manuscript no. 99‐09‐0311.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0361-5995
1435-0661
DOI:10.2136/sssaj1999.634768x