Computation of fractal dimension of rock pores based on gray CT images

The characterization of pore structure in rocks is relevant in determining their various mechanical behaviors. Digital image processing methods integrated with fractal theory were applied to analyze images of rock slices obtained from industry CT, elucidating the characteristics of rock pore structu...

Full description

Saved in:
Bibliographic Details
Published inChinese science bulletin Vol. 56; no. 31; pp. 3346 - 3357
Main Authors Peng, RuiDong, Yang, YanCong, Ju, Yang, Mao, LingTao, Yang, YongMing
Format Journal Article
LanguageEnglish
Published Heidelberg Springer-Verlag 01.11.2011
SP Science China Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The characterization of pore structure in rocks is relevant in determining their various mechanical behaviors. Digital image processing methods integrated with fractal theory were applied to analyze images of rock slices obtained from industry CT, elucidating the characteristics of rock pore structure and the relationship between porosity and fractal dimensions. The gray values of pixels in CT images of rocks provide comprehensive results with respect to the attenuation coefficients of various materials in corresponding rock elements, and these values also reflect the effect of rock porosity at various scales. A segmentation threshold can be determined by inverse analysis based on the pore ratios that are measured experimentally, and subsequently binary images of rock pores can be obtained to study their topological structures. The fractal dimension of rock pore structure increases with an increase in rock pore ratio, and fractal dimensions might differ even if pore ratios are the same. The more complex the structure of a rock, the larger the fractal dimension becomes. The experimental studies have validated that fractal dimension calculated directly from gray CT images of rocks can give an effective complementary parameter to use alongside pore ratios and they can suitably represent the fractal characteristics of rock pores.
Bibliography:11-1785/N
rock, pore, CT, fractal dimension, image processing
The characterization of pore structure in rocks is relevant in determining their various mechanical behaviors. Digital image processing methods integrated with fractal theory were applied to analyze images of rock slices obtained from industry CT, elucidating the characteristics of rock pore structure and the relationship between porosity and fractal dimensions. The gray values of pixels in CT images of rocks provide comprehensive results with respect to the attenuation coefficients of various materials in corresponding rock elements, and these values also reflect the effect of rock porosity at various scales. A segmentation threshold can be determined by inverse analysis based on the pore ratios that are measured experimentaUy, and subsequently binary images of rock pores can be obtained to study their topological structures. The fractal dimension of rock pore structure increases with an increase in rock pore ratio, and fractal dimensions might differ even if pore ratios are the same. The more complex the structure of a rock, the larger the fractal dimension becomes. The experimental studies have validated that fractal dimension calculated directly from gray CT images of rocks can give an effective complementary parameter to use alongside pore ratios and they can suitably represent the fractal characteristics of rock pores.
http://dx.doi.org/10.1007/s11434-011-4683-9
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1001-6538
1861-9541
DOI:10.1007/s11434-011-4683-9