Influence of pH on the Formation of Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System

The influence of pH on the degradation of refractory organics (benzoic acid, BA) in UV(254 nm)/Peroxymonosulfate (UV/PMS) system was investigated. The degradation of BA was significantly enhanced at the pH range of 8–11, which could not be explained only by the generally accepted theory that SO4 •‑...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 45; no. 21; pp. 9308 - 9314
Main Authors Guan, Ying-Hong, Ma, Jun, Li, Xu-Chun, Fang, Jing-Yun, Chen, Li-Wei
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The influence of pH on the degradation of refractory organics (benzoic acid, BA) in UV(254 nm)/Peroxymonosulfate (UV/PMS) system was investigated. The degradation of BA was significantly enhanced at the pH range of 8–11, which could not be explained only by the generally accepted theory that SO4 •‑ was converted to HO• at higher pH. A hypothesis was proposed that the rate of PMS photolysis into HO• and SO4 •‑ increased with pH. The hypothesis was evidenced by the measured increase of apparent-molar absorption coefficient of PMS (εPMS, 13.8–149.5 M–1·cm–1) and photolysis rate of PMS with pH, and further proved by the increased quasi-stationary concentrations of both HO• and SO4 •‑ at the pH range of 8–10. The formation of HO• and SO4 •‑ in the UV/PMS system was confirmed mainly from the cooperation of the photolysis of PMS, the decay of peroxomonosulfate radical (SO5 •‑) and the conversion of SO4 •‑ to HO• by simulation and experimental results. Additionally, the apparent quantum yield for SO4 •‑ in the UV/PMS system was calculated as 0.52 ± 0.01 at pH 7. The conclusions above as well as the general kinetic expressions given might provide some references for the UV/PMS applications.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0013-936X
1520-5851
1520-5851
DOI:10.1021/es2017363