Preparation of 3D Architecture Graphdiyne Nanosheets for High-Performance Sodium-Ion Batteries and Capacitors

Here, we apply three-dimensional (3D) architecture graphdiyne nanosheet (GDY-NS) as anode materials for sodium-ion storage devices achieving high energy and power performance along with excellent cyclic ability. The contribution of 3D architecture nanostructure and intramolecular pores of the GDY-NS...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 9; no. 46; pp. 40604 - 40613
Main Authors Wang, Kun, Wang, Ning, He, Jianjiang, Yang, Ze, Shen, Xiangyan, Huang, Changshui
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Here, we apply three-dimensional (3D) architecture graphdiyne nanosheet (GDY-NS) as anode materials for sodium-ion storage devices achieving high energy and power performance along with excellent cyclic ability. The contribution of 3D architecture nanostructure and intramolecular pores of the GDY-NS can substantially optimize the sodium storage behavior through the accommodated intramolecular pore, 3D interconnective porous structure, and increased activity sites to facilitate a fast sodium-ion-diffusion channel. The contribution of butadiyne linkages and the formation of a stable solid electrolyte interface layer are directly confirmed through the in situ Raman measurement. The GDY-NS-based sodium-ion batteries exhibit a stable reversible capacity of approximately 812 mAh g–1 at a current density of 0.05 A g–1; they maintain more than 405 mAh g–1 over 1000 cycles at a current density of 1 A g–1. Furthermore, the sodium-ion capacitors could deliver a capacitance more than 200 F g–1 over 3000 cycles at 1 A g–1 and display an initial specific energy as high as 182.3 Wh kg–1 at a power density of 300 W kg–1 and maintain specific energy of 166 Wh kg–1 even at a power density of 15 000 W kg–1. The high energy and power density along with excellent cyclic performance based on the GDY-NS anode offers a great potential toward application on next-generation energy storage devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b11420